【題目】在平面直角坐標(biāo)系xOy中,直線lyax+b與雙曲線交于點(diǎn)A1,m)和B(﹣2,﹣1).點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)C

1)①求k的值和點(diǎn)C的坐標(biāo);②求直線l的表達(dá)式;

2)過(guò)點(diǎn)By軸的垂線與直線AC交于點(diǎn)D,經(jīng)過(guò)點(diǎn)C的直線與直線BD交于點(diǎn)E.若30°≤∠CED45°,直接寫(xiě)出點(diǎn)E的橫坐標(biāo)t的取值范圍.

【答案】1)①k=2;點(diǎn)C為(1,-2.

②直線l的表達(dá)式為.

2 .

【解析】

1)①將B點(diǎn)坐標(biāo)帶入,得到k值,再將A點(diǎn)帶入雙曲線,得到m值,由對(duì)稱性得到點(diǎn)C.

②由①可知A,B兩點(diǎn)坐標(biāo),將它們帶入y=axb,列方程組得到直線l的表達(dá)式.

2)結(jié)合題意根據(jù)三角函數(shù)關(guān)系即可得到答案.

1)①將B點(diǎn)坐標(biāo)帶入,

得到k=2,則雙曲線為,

再將A點(diǎn)帶入雙曲線,

得到m=2值,則點(diǎn)A為(1,2),由對(duì)稱性得到點(diǎn)C為(1,-2.

②由①可知A,B兩點(diǎn)坐標(biāo),將它們帶入y=axb,

列方程組

兩式相加得b=0,a=.故直線l的表達(dá)式為.

2)由題意可知CBD的距離為1,因?yàn)?/span>,

當(dāng)時(shí),DE1=DE4=1,t=0t=2;當(dāng)時(shí),DE2=DE3=

可得t= t=,∴ .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“足球運(yùn)球”被列入中招體育必考項(xiàng)目.為此某學(xué)校舉行“足球運(yùn)球”達(dá)標(biāo)測(cè)試,將成績(jī)10分、9分、8分、7分,對(duì)應(yīng)定為A,BC,D四個(gè)等級(jí).某班根據(jù)測(cè)試成績(jī)繪制如下統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:

(1)該班級(jí)的總?cè)藬?shù)為   ,m   

(2)補(bǔ)全條形統(tǒng)計(jì)圖.

(3)該班“足球運(yùn)球”測(cè)試的平均成績(jī)是多少?

(4)現(xiàn)準(zhǔn)備從等級(jí)為A4個(gè)人(22)中隨機(jī)抽取兩個(gè)人去參加比賽,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求出恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①abc0;②4acb2;③2a+b0;④其頂點(diǎn)坐標(biāo)為(,﹣2);⑤當(dāng)x時(shí),yx的增大而減。虎a+b+c0正確的有( 。

A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在AB、CD上,DGEF于點(diǎn)H,交BC于點(diǎn)G,點(diǎn)P在線段BG上.若∠PEF45°,AECG5,PG5,則EP____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】5G網(wǎng)絡(luò)是第五代移動(dòng)通信網(wǎng)絡(luò),它將推動(dòng)我國(guó)數(shù)字經(jīng)濟(jì)發(fā)展邁上新臺(tái)階. 據(jù)預(yù)測(cè),2020年到2030年中國(guó)5G直接經(jīng)濟(jì)產(chǎn)出和間接經(jīng)濟(jì)產(chǎn)出的情況如下圖所示.

根據(jù)上圖提供的信息,下列推斷不合理的是( )

A.20305G間接經(jīng)濟(jì)產(chǎn)出比5G直接經(jīng)濟(jì)產(chǎn)出多4.2萬(wàn)億元

B.2020年到2030年,5G直接經(jīng)濟(jì)產(chǎn)出和5G間接經(jīng)濟(jì)產(chǎn)出都是逐年增長(zhǎng)

C.20305G直接經(jīng)濟(jì)產(chǎn)出約為20205G直接經(jīng)濟(jì)產(chǎn)出的13

D.2022年到2023年與2023年到20245G間接經(jīng)濟(jì)產(chǎn)出的增長(zhǎng)率相同

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面內(nèi)的∠MAN及其內(nèi)部的一點(diǎn)P,設(shè)點(diǎn)P到直線AM,AN的距離分別為d1d2,稱這兩個(gè)數(shù)中較大的一個(gè)為點(diǎn)P關(guān)于的“偏率” . 在平面直角坐標(biāo)系xOy中,

1)點(diǎn)MN分別為x軸正半軸,y軸正半軸上的兩個(gè)點(diǎn).

若點(diǎn)P的坐標(biāo)為(1,5),則點(diǎn)P關(guān)于的“偏率”為____________

若第一象限內(nèi)點(diǎn)Qa,b)關(guān)于的“偏率”為1,則a,b滿足的關(guān)系為____________;

2)已知點(diǎn)A4,0),B2,),連接OB,AB,點(diǎn)C是線段AB上一動(dòng)點(diǎn)(點(diǎn)C不與點(diǎn)AB重合). 若點(diǎn)C關(guān)于的“偏率”為2,求點(diǎn)C的坐標(biāo);

3)點(diǎn)EF分別為x軸正半軸,y軸正半軸上的兩個(gè)點(diǎn),動(dòng)點(diǎn)T的坐標(biāo)為(t,4),是以點(diǎn)T為圓心,半徑為1的圓. 上的所有點(diǎn)都在第一象限,且關(guān)于的“偏率”都大于,直接寫(xiě)出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時(shí)小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達(dá)甲地停留一段時(shí)間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時(shí)間為x分鐘.y1、y2x之間的函數(shù)圖象如圖1sx之間的函數(shù)圖象(部分)如圖2

1)求小亮從乙地到甲地過(guò)程中y1(米)與x(分鐘)之間的函數(shù)關(guān)系式;

2)求小亮從甲地返回到與小明相遇的過(guò)程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;

3)在圖2中,補(bǔ)全整個(gè)過(guò)程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)李飛與劉亮射擊訓(xùn)練的成績(jī)繪制了如圖所示的折線統(tǒng)計(jì)圖.

根據(jù)圖所提供的信息,若要推薦一位成績(jī)較穩(wěn)定的選手去參賽,應(yīng)推薦( 。

A. 李飛或劉亮 B. 李飛 C. 劉亮 D. 無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)是我國(guó)的傳統(tǒng)節(jié)日,益民食品廠為了解市民對(duì)去年銷量較好的花生粽子、水果粽子、豆沙粽子、紅棗粽子(分別用AB、CD表示)這四種不同口味的粽子的喜愛(ài)情況,對(duì)某居民區(qū)的市民進(jìn)行了抽樣調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;

(3)小明喜歡吃花生粽子和紅棗粽子,媽媽為他準(zhǔn)備了四種粽子各一個(gè),請(qǐng)用“列表法”或“畫(huà)樹(shù)形圖”的方法,求出小明同時(shí)選中花生粽子和紅棗粽子的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案