【題目】某學習小組在探索“各內角都相等的圓內接多邊形是否為正多邊形”時,進行如下討論:
甲同學:這種多邊形不一定是正多邊形,如圓內接矩形.
乙同學:我發(fā)現(xiàn)邊數(shù)是6時,它也不一定是正多邊形,如圖1,△ABC是正三角形, ,證明六邊形ADBECF的各內角相等,但它未必是正六邊形.
丙同學:我能證明,邊數(shù)是5時,它是正多邊形,我想…,邊數(shù)是7時,它可能也是正多邊形.
(1)請你說明乙同學構造的六邊形各內角相等;
(2)請你證明,各內角都相等的圓內接七邊形ABCDEFG(如圖2)是正七邊形;(不必寫已知,求證)
(3)根據(jù)以上探索過程,提出你的猜想.(不必證明)
【答案】(1)圖(1)中六邊形各角相等;(2)證明見解析(3)猜想:當邊數(shù)是奇數(shù)時(或當邊數(shù)是3,5,7,9,時),各內角相等的圓內接多邊形是正多邊形
【解析】試題分析:(1)由題圖①知∠AFC對,∠DAF對,根據(jù)已知可得,從而可以得到∠AFC=∠DAF,即可得證;
(2)根據(jù)已知條件,結合圖形不難得到=,繼而得到,同理可得到其它狐之間的相等關系,進而證明結論;
(3),根據(jù)已知條件進行分析,結合上面的結論寫出猜想即可.
試題解析:(1)由圖知∠AFC對,
∵,而∠DAF對的,
∴∠AFC=∠DAF.同理可證,其余各角都等于∠AFC,
故圖(1)中六邊形各角相等;
(2)∵∠A對,∠B對,
又∵∠A=∠B,
∴,
∴,
同理, .
(3)猜想:當邊數(shù)是奇數(shù)時(或當邊數(shù)是3,5,7,9,時),
各內角相等的圓內接多邊形是正多邊形.
科目:初中數(shù)學 來源: 題型:
【題目】已知,四邊形ABCD是正方形,點P在直線BC上,點G在直線AD上(P、G不與正方形頂點重合,且在CD的同側),PD=PG,DF⊥PG于點H,交直線AB于點F,將線段PG繞點P逆時針旋轉90°得到線段PE,連結EF.
(1)如圖1,當點P與點G分別在線段BC與線段AD上時.
①求證:DG=2PC;
②求證:四邊形PEFD是菱形;
(2)如圖2,當點P與點G分別在線段BC與線段AD的延長線上時,請猜想四邊形PEFD是怎樣的特殊四邊形,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為紀念建國70周年,我市某中學團委擬組織學生開展唱紅歌比賽活動,為此,該校隨機抽取部分學生就“你是否喜歡紅歌”進行問卷調查,并將調查結果統(tǒng)計后繪制成如下統(tǒng)計表和扇形統(tǒng)計圖.
態(tài)度 | 非常喜歡 | 喜歡 | 一般 | 不知道 |
頻數(shù) | 90 | b | 30 | 10 |
頻率 | a |
請你根據(jù)統(tǒng)計圖、表提供的信息解答下列問題:
該校這次隨機抽取了______名學生參加問卷調查;
確定統(tǒng)計表中的值:______,______;
在統(tǒng)計圖中“喜歡”部分扇形所對應的圓心角是______度;
若該校共有2000名學生,估計全校態(tài)度為“非常喜歡”的學生有______人
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點 A(﹣2,0),B(2,0),C(0,2),點 D,點E分別是 AC,BC的中點,將△CDE繞點C逆時針旋轉得到△CD′E′,及旋轉角為α,連接 AD′,BE′.
(1)如圖①,若 0°<α<90°,當 AD′∥CE′時,求α的大。
(2)如圖②,若 90°<α<180°,當點 D′落在線段 BE′上時,求 sin∠CBE′的值;
(3)若直線AD′與直線BE′相交于點P,求點P的橫坐標m的取值范圍(直接寫出結果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:中,過B點作BE⊥AD,.
(1)如圖1,點在的延長線上,連,作于,交于點.求證:;
(2)如圖2,點在線段上,連,過作,且,連交于,連,問與有何數(shù)量關系,并加以證明;
(3)如圖3,點在CB延長線上,且,連接、的延長線交于點,若,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的4倍的三角形叫做常態(tài)三角形.例如:某三角形三邊長分別是5,6和8,因為,所以這個三角形是常態(tài)三角形.
(1)若三邊長分別是2,和4,則此三角形 常態(tài)三角形(填“是”或“不是” ;
(2)如圖,中,,,點為的中點,連接,若是常態(tài)三角形,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年汶川車厘子喜獲豐收,車厘子一上市,水果店的王老板用2500元購進一批車厘子,很快售完;老板又用4400元購進第二批車厘子,所購數(shù)量是第一批的2倍,由于進貨量增加,進價比第一批每干克少了3元.”
(l)第一批車厘子每千克進價多少元?.
(2)該老板在銷售第二批車厘子時,售價在第二批進價的基礎上增加了,售出后,為了盡快售完,決定將剩余車厘子在第二批進價的基礎上每千克降價元進行促銷,結果第二批車厘子的銷售利潤為1520元,求的值。(利潤=售價一進價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一項工程,甲,乙兩公司合做,12天可以完成,共需付施工費102000元;如果甲,乙兩公司單獨完成此項工程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元.
(1)甲,乙兩公司單獨完成此項工程,各需多少天?
(2)若讓一個公司單獨完成這項工程,哪個公司的施工費較少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com