【題目】(2016湖南省益陽市)如圖①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D為AB的中點(diǎn),EF為△ACD的中位線,四邊形EFGH為△ACD的內(nèi)接矩形(矩形的四個頂點(diǎn)均在△ACD的邊上).
(1)計(jì)算矩形EFGH的面積;
(2)將矩形EFGH沿AB向右平移,F落在BC上時(shí)停止移動.在平移過程中,當(dāng)矩形與△CBD重疊部分的面積為時(shí),求矩形平移的距離;
(3)如圖③,將(2)中矩形平移停止時(shí)所得的矩形記為矩形E1F1G1H1,將矩形E1F1G1H1繞G1點(diǎn)按順時(shí)針方向旋轉(zhuǎn),當(dāng)H1落在CD上時(shí)停止轉(zhuǎn)動,旋轉(zhuǎn)后的矩形記為矩形E2F2G1H2,設(shè)旋轉(zhuǎn)角為α,求cosα的值.
【答案】答案見解析.
【解析】試題分析:(1)根據(jù)已知,由直角三角形的性質(zhì)可知AB=2,從而求得AD,CD,利用中位線的性質(zhì)可得EF,DF,利用三角函數(shù)可得GF,由矩形的面積公式可得結(jié)果;
(2)首先利用分類討論的思想,分析當(dāng)矩形與△CBD重疊部分為三角形時(shí)(0<x≤),利用三角函數(shù)和三角形的面積公式可得結(jié)果;當(dāng)矩形與△CBD重疊部分為直角梯形時(shí)(<x≤),列出方程解得x;
(3)作H2Q⊥AB于Q,設(shè)DQ=m,則H2Q=,又,,利用勾股定理可得m,在Rt△QH2G1中,利用三角函數(shù)解得cosα.
試題解析:(1)如圖①,在△ABC中,∵∠ACB=90°,∠B=30°,AC=1,∴AB=2,
又∵D是AB的中點(diǎn),∴AD=1,CD=AB=1,
又∵EF是△ACD的中位線,∴EF=DF=,
在△ACD中,AD=CD,∠A=60°,∴∠ADC=60°,
在△FGD中,GF=DFsin60°=,∴矩形EFGH的面積S=EFGF==;
(2)如圖②,設(shè)矩形移動的距離為x,則0<x≤;
當(dāng)矩形與△CBD重疊部分為三角形時(shí),則0<x≤,S=,∴x=.(舍去);
當(dāng)矩形與△CBD重疊部分為直角梯形時(shí),則<x≤,重疊部分的面積S=,∴x=,即矩形移動的距離為時(shí),矩形與△CBD重疊部分的面積是;
(3)如圖③,作H2Q⊥AB于Q,設(shè)DQ=m,則H2Q=,又,.
在Rt△H2QG1中,,解之得m=(負(fù)的舍去),
∴cosα===.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖1,在矩形ABCD中,E是BC的中點(diǎn),將△ABE沿AE折疊后得到△AFE,點(diǎn)F在矩形ABCD內(nèi)部,延長AF交CD于點(diǎn)G.猜想線段GF與GC有何數(shù)量關(guān)系?并證明你的結(jié)論.
(2)簡單應(yīng)用:在(1)中,如果AB=4,AD=6,求DG的長;
(3)類比探究:如圖2,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結(jié)論是否仍然成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在大課間活動中,體育老師隨機(jī)抽取了七年級甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測試,并對成績進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請你根據(jù)圖表中的信息完成下列問題:
分 組 | 頻數(shù) | 頻率 |
第一組(0≤x<15) | 3 | 0.15 |
第二組(15≤x<30) | 6 | a |
第三組(30≤x<45) | 7 | 0.35 |
第四組(45≤x<60) | b | 0.20 |
(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該校七年級共有女生180人,估計(jì)仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?
(3)已知第一組中只有一個甲班學(xué)生,第四組中只有一個乙班學(xué)生,老師隨機(jī)從這兩個組中各選一名學(xué)生談心得體會,則所選兩人正好都是甲班學(xué)生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小李某天上午營運(yùn)時(shí)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>km)如下:-2 , +5 ,-1 ,+1 ,-6 ,- 2 ,問:
(1)將最后一位乘客送到目的地時(shí),小李在什么位置?
(2)若汽車耗油量為0.2L/km(升/千米),這天上午小李接送乘客,出租車共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的方式拼成一個正方形.
(1)你認(rèn)為圖②中的陰影部分的正方形的邊長等于_________________;
(2)請用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積.
方法① __________________.方法② _____________________;
(3)觀察圖②,你能寫出(m+n)2,(m-n)2,mn這三個代數(shù)式之間的等量關(guān)系嗎?
答:________________________ .
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:若a+b=6,ab=4,則求(a-b)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F分別是正方形ABCD的邊CD,AD上的點(diǎn),且CE=DF,AE,BF相交于點(diǎn)O,下列結(jié)論:①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四邊形DEOF.其中正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AC為直徑,=,DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)判斷直線ED與⊙O的位置關(guān)系,并說明理由;
(3)若CE=1,AC=4,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=,BC=4.線段AB的垂直平分線DF分別交邊AB、AC、BC所在的直線于點(diǎn)D、E、F.
(1)求線段BF的長;
(2)求AE:EC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a是最大的負(fù)整數(shù),b、c滿足,且a,b,c分別是點(diǎn)A,B,C在數(shù)軸上對應(yīng)的數(shù).
(1)求a,b,c的值,并在數(shù)軸上標(biāo)出點(diǎn)A,B,C;
(2)若動點(diǎn)P從C出發(fā)沿?cái)?shù)軸正方向運(yùn)動,點(diǎn)P的速度是每秒2個單位長度,運(yùn)動幾秒后,點(diǎn)P到達(dá)B點(diǎn)?
(3)在數(shù)軸上找一點(diǎn)M,使點(diǎn)M到A,B,C三點(diǎn)的距離之和等于13,請直接寫出所有點(diǎn)M對應(yīng)的數(shù).(不必說明理由)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com