【題目】如圖,E、F分別是正方形ABCD的邊CD,AD上的點,且CE=DF,AE,BF相交于點O,下列結論:①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四邊形DEOF.其中正確的有( )
A. 1個B. 2個C. 3個D. 4個
【答案】C
【解析】
根據(jù)正方形的性質可得∠BAF=∠D=90°,AB=AD=CD,然后求出AF=DE,再利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應邊相等可得AE=BF,從而判定出①正確;再根據(jù)全等三角形對應角相等可得∠ABF=∠DAE,然后證明∠ABF+∠BAO=90°,再得到∠AOB=90°,從而得出AE⊥BF,判斷②正確;假設AO=OE,根據(jù)線段垂直平分線上的點到線段兩端點的距離相等的性質可得AB=BE,再根據(jù)直角三角形斜邊大于直角邊可得BE>BC,即BE>AB,從而判斷③錯誤;根據(jù)全等三角形的面積相等可得S△ABF=S△ADE,然后都減去△AOF的面積,即可得解,從而判斷④正確.
在正方形ABCD中,∠BAF=∠D=90°,AB=AD=CD,
∵CE=DF,
∴AD-DF=CD-CE,
即AF=DE,
在△ABF和△DAE中,
AB=AD
∠BAF=∠D=90°
AF=DE
∴△ABF≌△DAE(SAS),
∴AE=BF,故①正確;
∠ABF=∠DAE,
∵∠DAE+∠BAO=90°,
∴∠ABF+∠BAO=90°,
在△ABO中,∠AOB=180°-(∠ABF+∠BAO)=180°-90°=90°,
∴AE⊥BF,故②正確;
假設AO=OE,
∵AE⊥BF(已證),
∴AB=BE(線段垂直平分線上的點到線段兩端點的距離相等),
∵在Rt△BCE中,BE>BC,
∴AB>BC,這與正方形的邊長AB=BC相矛盾,
所以,假設不成立,AO≠OE,故③錯誤;
∵△ABF≌△DAE,
∴S△ABF=S△DAE,
∴S△ABF-S△AOF=S△DAE-S△AOF,
即S△AOB=S四邊形DEOF,故④正確;
綜上所述,正確的有3個
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關系.
(1)L1表示哪輛汽車到甲地的距離與行駛時間的關系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關系式.
(4)2小時后,兩車相距多少千米?
(5)行駛多長時間后,A、B兩車相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】算24點游戲是一種使用撲克牌來進行的益智類游戲,游戲內容是:從一副撲克牌中抽去大小王剩下52張,任意抽取4張牌,把牌面上的數(shù)運用你所學過的加、減、乘、除、乘方運算得出24.每張牌都必須使用一次,但不能重復使用.
(1)如圖1,在玩“24點”游戲時,小明抽到以下4張牌:
請你幫他寫出運算結果為24的算式:(寫出2個); 、 ;
(2)如圖2,如果、表示正,. 表示負,J表示11點,Q表示12點.請你用下列4張牌表示的數(shù)寫出運算結果為24的算式(寫出1個): .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016湖南省益陽市)如圖①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D為AB的中點,EF為△ACD的中位線,四邊形EFGH為△ACD的內接矩形(矩形的四個頂點均在△ACD的邊上).
(1)計算矩形EFGH的面積;
(2)將矩形EFGH沿AB向右平移,F落在BC上時停止移動.在平移過程中,當矩形與△CBD重疊部分的面積為時,求矩形平移的距離;
(3)如圖③,將(2)中矩形平移停止時所得的矩形記為矩形E1F1G1H1,將矩形E1F1G1H1繞G1點按順時針方向旋轉,當H1落在CD上時停止轉動,旋轉后的矩形記為矩形E2F2G1H2,設旋轉角為α,求cosα的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了組織一次球類對抗賽,在本校隨機抽取了若干名學生,對他們每個人最喜歡的一項球類運動進行了統(tǒng)計,將調查結果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你依據(jù)以上的信息回答下列問題:
(1)求本次被調查的學生人數(shù);
(2)通過計算補全條形統(tǒng)計圖;
(3)若全校有4000名學生,請你估計該校最喜歡籃球和足球運動的學生共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉行全體學生“漢字聽寫”比賽,每位學生聽寫漢字39個.隨機抽取了部分學生的聽寫結果,繪制成如下的圖表.
根據(jù)以上信息完成下列問題:
(1)統(tǒng)計表中的m= ,n= ,并補全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中“C組”所對應的圓心角的度數(shù)是 ;
(3)已知該校共有900名學生,如果聽寫正確的字的個數(shù)少于24個定為不合格,請你估計該校本次聽寫比賽不合格的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某條道路上通行車輛限速60千米/時,道路的AB段為監(jiān)測區(qū),監(jiān)測點P到AB的距離PH為50米(如圖).已知點P在點A的北偏東45°方向上,且在點B的北偏西60°方向上,點B在點A的北偏東75°方向上,那么車輛通過AB段的時間在多少秒以內,可認定為超速?(參考數(shù)據(jù):≈1.7,≈1.4).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知輪船A在燈塔P的北偏東30°的方向上,輪船B在燈塔P的南偏東70°的方向上.
(1)求從燈塔P看兩輪船的視角(即∠APB)的度數(shù)?
(2)輪船C在∠APB的角平分線上,則輪船C在燈塔P的什么方位?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com