(1)閱讀下列材料,補全證明過程.

  如圖,矩形ABCD中,AC、BD相交于點O,OEBCE,連結DEOC于點F,作FGBCG

  求證:點G是線段BC的一個三等分點.

  證明:在矩形ABCD中,OEBC,DCBCOEDC.

  ,∴..

  (2)請你仿照上面的畫法,在原圖上畫出BC的一個四等分點.(要求:保留畫圖痕跡,不寫畫法及證明過程)

 

答案:
解析:

連結DGACP,過PPMBCBC

  M.則M為四等分點.

 


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,然后回答問題.
在進行二次根式的化簡與運算時,我們有時會碰上如
3
5
,
2
3
,
2
3
+1
一樣的式子,其實我們還可以將其進一步化簡:
3
5
=
5
5
×
5
=
3
5
5
;(一)
2
3
=
2×3
3×3
=
6
3
(二)
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)
2
-12
=
3
-1
(三)
以上這種化簡的步驟叫做分母有理化.
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1
(四)
(1)請用不同的方法化簡
2
5
+
3

①參照(三)式得
2
5
+
3
=( 。;
②參照(四)式得
2
5
+
3
=( 。
(2)化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,然后回答問題.
在進行二次根式化簡時,我們有時會碰上如
2
5
,
2
3
,
2
3
+1
一樣的式子,其實我們還可以將其進一步化簡:
2
5
=
5
5
×
5
=
2
5
5
;(一)
2
3
=
2×3
3×3
=
6
3
;(二)
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)2-12
=
3
-1。ㄈ
以上這種化簡的步驟叫做分母有理化.
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)2-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1(四)
(1)請用以下指定的方法化簡
2
2009
+
2007
(2).
參照(三)式化簡
2
2009
+
2007
;
參照(四)式化簡
2
2009
+
2007

(2)化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,按要求回答問題.
(1)觀察下面兩塊三角尺,它們有一個共同的性質:∠A=2∠B,我們由此出發(fā)來進行思考.
在圖(1)中作斜邊上的高CD,由于∠B=30°,可知c=2b,∠ACD=30°,于是AD=
b
2
,BD=c-
b
2
,由于△CDB∽△ACB,可知,即a2=c•BD.同理b2=c•AD,于是a2-b2=c(BD-AD)=c(c-b)=bc.對于圖(2),由勾股定理有a2=b2+c2,由于b=c,故也有a2-b2=bc.
在△ABC中,如果一個內角等于另一個內角的2倍,我們稱這樣的三角形為倍角三角形,兩塊三角尺都是特殊的倍角三角形,對于任意倍角三角形,上面的結論仍然成立嗎?我們暫時把設想作為一種猜測:
如圖(3),在△ABC中,若∠CAB=2∠ABC,則a2-b2=bc.
在上述由三角尺的性質到“猜測”這一認識過程中,用到了下列四種數(shù)學思想方法中的哪一種選出一個正確的并將其序號填在括號內( 。
①分類的思想方法②轉化的思想方法③由特殊到一般的思想方法④精英家教網(wǎng)數(shù)形結合的思想方法
(2)這個猜測是否正確,請證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,然后解答后面的問題:
我們知道二元一次方程組
2x+3y=12
3x-3y=6
的求解方法是消元法,即可將它化為一元一次方程來解,可求得方程組
2x+3y=12
3x-3y=6
有唯一解.
我們也知道二元一次方程2x+3y=12的解有無數(shù)個,而在實際問題中我們往往只需要求出其正整數(shù)解.
下面是求二元一次方程2x+3y=12的正整數(shù)解的過程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x

∵x、y為正整數(shù),∴
x>0
12-2x>0
則有0<x<6
又y=4-
2
3
x
為正整數(shù),則
2
3
x
為正整數(shù),所以x為3的倍數(shù)
又因為0<x<6,從而x=3,代入:y=4-
2
3
×3
=2
∴2x+3y=12的正整數(shù)解為
x=3
y=2

問題:(1)若 
6
x-2
為正整數(shù),則滿足條件的x的值有幾個.( 。
A、2    B、3    C、4   D、5
      (2)九年級某班為了獎勵學習進步的學生,花費35元購買了筆記本和鋼筆兩種獎品,其中筆記本的單價為3元/本,鋼筆單價為5元/支,問有幾種購買方案?
      (3)試求方程組
2x+y+z=10
3x+y-z=12
 的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,回答問題.
材料:
股票市場,買、賣股票都要分別交納印花稅等有關稅費.以滬市A股的股票交易為例,除成本外還要交納:
①印花稅:按成交金額的0.1%計算;
②過戶費:按成交金額的0.1%計算;
③傭金:按不高于成交金額的0.3%計算(本題按0.3%計算),不足5元按5元計算.
例:某投資者以每股5.00元的價格在滬市A股中買入股票“金杯汽車”1000股,以每股5.50元的價格全部賣出,共盈利(  )元.

查看答案和解析>>

同步練習冊答案