【題目】如圖,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),且.
(1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);
(2)判斷的形狀,證明你的結(jié)論;
(3)點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn),當(dāng)的值最小時(shí),求的值.
【答案】(1),頂點(diǎn)的坐標(biāo)為;(2)為直角三角形,理由見(jiàn)解析;(3)
【解析】
(1)把點(diǎn)代入解析式,求出b,利用配方法求出拋物線的頂點(diǎn)坐標(biāo);
(2)當(dāng)時(shí),,,即.,求出,根據(jù)勾股定理求出AC、BC,根據(jù)勾股定理的逆定理判斷即可;
(3)作出點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),則,連接交軸于點(diǎn),根據(jù)軸對(duì)稱(chēng)性及兩點(diǎn)之間線段最短可知,的值最小,求出直線的解析式即可求解.
解:(1)∵點(diǎn)在拋物線上,∴,解得
∴拋物線的解析式為,
又
∴頂點(diǎn)的坐標(biāo)為.
(2)為,理由如下:當(dāng)時(shí),,
∴,.
當(dāng)時(shí),,
∴,∴
∴,,.
∵,,
∴.
∴是直角三角形.
(3)作出點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),則,連接交軸于點(diǎn),根據(jù)軸對(duì)稱(chēng)性及兩點(diǎn)之間線段最短可知,的值最小,
設(shè)直線的解析式為,
則,解得,
∴.
∴當(dāng)時(shí),,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AC是直徑,弦BD=BA,EB⊥DC,交DC的延長(zhǎng)線于點(diǎn)E.
(1)求證:BE是⊙O的切線;
(2)當(dāng)sin∠BCE=,AB=3時(shí),求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】田忌賽馬的故事為我們所熟知.小亮與小齊學(xué)習(xí)概率初步知識(shí)后設(shè)計(jì)了如下游戲:小亮手中有方塊l0、8、6三張撲克牌,小齊手中有方塊9、7、5三張撲克牌.每人從各自手中取一張牌進(jìn)行比較,數(shù)字大的為本“局”獲勝,每次取的牌不能放回.
(1)若每人隨機(jī)取手中的一張牌進(jìn)行比賽,求小齊本“局”獲勝的概率;
(2)若比賽采用三局兩勝制,即勝2局或3局者為本次比賽獲勝者.當(dāng)小亮的三張牌出牌順序?yàn)橄瘸?,再出8,最后出l0時(shí),小齊隨機(jī)出牌應(yīng)對(duì),求小齊本次比賽獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(發(fā)現(xiàn))如圖,點(diǎn)E,F分別在正方形ABCD的邊BC,CD上,連接EF.因?yàn)?/span>AB=AD,所以把ΔABE繞A逆時(shí)針旋轉(zhuǎn)90°至ΔADG,可使AB與AD重合.因?yàn)椤?/span>CDA=∠B=90°,所以∠FDG=180°,所以F、D、G共線.
如果__________(填一個(gè)條件),可得ΔAEF≌ΔAGF.經(jīng)過(guò)進(jìn)一步研究我們可以發(fā)現(xiàn):當(dāng)BE,EF,FD滿足__________時(shí),∠EAF=45°.
(應(yīng)用)
如圖,在矩形ABCD中,AB=6,AD=m,點(diǎn)E在邊BC上,且BE=2.
(1)若m=8,點(diǎn)F在邊DC上,且∠EAF=45°(如圖),求DF的長(zhǎng);
(2)若點(diǎn)F在邊DC上,且∠EAF=45°,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,、是邊上的三等分點(diǎn),是邊上的中線,、分為三段的長(zhǎng)分別是、、,若這三段有,則等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以點(diǎn)O為圓心,AB長(zhǎng)為直徑作圓,在⊙O上取一點(diǎn)C,延長(zhǎng)AB至點(diǎn)D,連接DC,過(guò)點(diǎn)A作⊙O的切線交DC的延長(zhǎng)線于點(diǎn)E,且∠DCB=∠DAC.
(1)求證:CD是⊙O的切線;
(2)若AD=6,tan∠DCB=,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,點(diǎn)E、F分別為正方形ABCD的邊BC、CD上一點(diǎn),AC、BD交于點(diǎn)O,且∠EAF=45°,AE,AF分別交對(duì)角線BD于點(diǎn)M,N,則有以下結(jié)論:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上結(jié)論中,正確的個(gè)數(shù)有(。﹤(gè).
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形紙片ABCD,點(diǎn)E是AB的中點(diǎn),點(diǎn)G是BC上的一點(diǎn),∠BEG>60°.現(xiàn)沿直線EG將紙片折疊,使點(diǎn)B落在紙片上的點(diǎn)H處,連接AH,則與∠BEG相等的角的個(gè)數(shù)為( 。
A. 5B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)函數(shù)和,若對(duì)于每個(gè)使函數(shù)有意義的實(shí)數(shù),函數(shù)的值為兩個(gè)函數(shù)值中中較小的數(shù),則稱(chēng)函數(shù)為這兩個(gè)函數(shù)、的較小值函數(shù)。例如:,,則、的較小值函數(shù)
(1)函數(shù)是函數(shù),的較小值函數(shù);
①在如圖的平面直角坐標(biāo)系中畫(huà)出函數(shù)的圖像.
②寫(xiě)出函數(shù)的兩條性質(zhì).
(2)函數(shù)是函數(shù),的較小值函數(shù),當(dāng)時(shí),函數(shù)值的取值范圍為.當(dāng)取某個(gè)范圍內(nèi)的任意值時(shí),為定值.直接寫(xiě)出滿足條件的的取值范圍及其對(duì)應(yīng)的值.
(3)函數(shù)是函數(shù),(為常數(shù),且)的較小值函數(shù),當(dāng)時(shí),隨著的增大,函數(shù)值先增大后減小,直接寫(xiě)出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com