【題目】如圖.在△ABC中,AD是邊BC上的中線,過點(diǎn)A作AE∥BC,過點(diǎn)D作與DE∥AB,DE與AC、AE分別交于點(diǎn)O、E,連接EC.
(1)求證:AD=EC;
(2)當(dāng)△ABC滿足 時(shí),四邊形ADCE是菱形.
【答案】(1)見解析;(2)∠BAC=90°.
【解析】
(1)首先證明四邊形ABDE是平行四邊形,可得AE=BD,再根據(jù)DC=DB可得AE=DC,進(jìn)而證出四邊形ADCE是平行四邊形,可得AD=EC;(2)當(dāng)∠BAC=90°時(shí),可證出AD=DC,再根據(jù)有一組鄰邊相等的平行四邊形是菱形可得四邊形ADCE是菱形.
證明:(1)∵DE∥AB,AE∥BC,
∴四邊形ABDE是平行四邊形,
∴AE∥BD,且AE=BD
又∵AD是BC邊的中線,
∴BD=CD,
∴AE=CD,
∵AE∥CD,
∴四邊形ADCE是平行四邊形,
∴AD=EC;
(2)∵∠BAC=90°,AD是斜邊BC上的中線,
∴AD=BD=CD,
又∵四邊形ADCE是平行四邊形,
∴四邊形ADCE是菱形.
故答案為∠BAC=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細(xì)閱讀下面例題,解答問題:
例題:已知關(guān)于x的多項(xiàng)式x2-4x+m有一個(gè)因式是(x+3),求另一個(gè)因式以及m的值.
解:設(shè)另一個(gè)因式為(x+n),得:x2-4x+m=(x+3)(x+n),則x2-4x+m=x2+(n+3)x+3n,
∴,解得:n =-7,m =-21.
∴另一個(gè)因式為(x-7),m的值為-21.
問題:仿照以上方法解答下面問題:
(1)已知關(guān)于x的多項(xiàng)式2x2+3x-k有一個(gè)因式是(x+4),求另一個(gè)因式以及k的值.
(2)已知關(guān)于x的多項(xiàng)式2x3+5x2-x+b有一個(gè)因式為(x+2),求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A,B,C在半徑為4的⊙O上,過點(diǎn)C作⊙O的切線交OA的延長線于點(diǎn)D.
(Ⅰ)若∠ABC=29°,求∠D的大小;
(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于點(diǎn)E,求:
①BE的長;
②四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了從甲、乙兩名學(xué)生中選派一名學(xué)生參加市綜合知識(shí)技能競賽,對(duì)他們進(jìn) 行了 8 次綜合知識(shí)技能測(cè)試,記錄如下:
學(xué)生 | 8 次測(cè)試成績(分) | 平均數(shù) | 中位數(shù) | 方差 | |||||||
甲 | 95 | 82 | 88 | 81 | 93 | 79 | 84 | 78 | 85 | 35.5 | |
乙 | 83 | 92 | 80 | 95 | 90 | 80 | 85 | 75 | 84 |
(1)請(qǐng)你通過計(jì)算求出表格中所缺少的甲、乙兩名學(xué)生這 8 次測(cè)試成績的平均數(shù)、中位數(shù) 和方差;
(2)現(xiàn)要從中選派一人參加市綜合知識(shí)技能競賽,你認(rèn)為選派哪名同學(xué)參加合適,請(qǐng)說明 理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下三個(gè)結(jié)論:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°.其中結(jié)論正確的結(jié)論是()
A.①②③B.①②C.①③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與A.E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ,以下五個(gè)結(jié)論:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,一定成立的有________(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形紙片沿折疊后,使得點(diǎn)與點(diǎn)重合,點(diǎn)落在點(diǎn)的位置上.
(1)若,求的度數(shù);
(2)求證:;
(3)若,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,從頂點(diǎn)A引兩條射線分別交BC,CD于點(diǎn)E,F(xiàn),且∠EAF=45°.
求證:BE+DF=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(1,3)、B(3,-1),利用圖中的“格點(diǎn)”完成下列作圖并解答:
(1)在第三象限內(nèi)找“格點(diǎn)”C,使得CA=CB,則點(diǎn)C的坐標(biāo)是 ;
(2)在(1)的基礎(chǔ)上,標(biāo)出“格點(diǎn)”D,使得△DCB≌△ABC,則點(diǎn)D的坐標(biāo)是 ;
(3)點(diǎn)M是x軸上一點(diǎn),且MA-MB的值最大,則點(diǎn)M的坐標(biāo)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com