【題目】如圖,把長(zhǎng)方形紙片沿折疊后,使得點(diǎn)與點(diǎn)重合,點(diǎn)落在點(diǎn)的位置上.

1)若,求的度數(shù);

2)求證:;

3)若,求的面積.

【答案】1;(2)證明見(jiàn)解析;(322. 5

【解析】

1)根據(jù)矩形的性質(zhì)和平行線的性質(zhì)可得∠2=∠1=60°,然后根據(jù)折疊的性質(zhì)可得∠BEF=2=60°,從而求出∠3的度數(shù);

2)根據(jù)矩形的性質(zhì)和平行線的性質(zhì)可得∠2=∠1,然后根據(jù)折疊的性質(zhì)可得∠BEF=2,從而證出:∠BEF=1,最后根據(jù)等角對(duì)等邊即可證出;

3)過(guò)點(diǎn)EEGBCG,根據(jù)平行線之間的距離處處相等即可求出:EG=AB=6,由折疊的性質(zhì),可設(shè)BE=ED=x,則AE=12x,然后根據(jù)勾股定理列出方程,即可求出x的值,根據(jù)(2)的結(jié)論即可求出BF從而求出的面積.

解:(1)∵四邊形ABCD是長(zhǎng)方形

ADBC

∴∠2=∠1=60°

由折疊可知:∠BEF=2=60°

∴∠3=180°-∠BEF-∠2=60°

2)∵四邊形ABCD是長(zhǎng)方形

ADBC

∴∠2=∠1

由折疊可知:∠BEF=2

∴∠BEF=1

3)過(guò)點(diǎn)EEGBCG,如下圖所示,

EG=AB=6

由折疊的性質(zhì),可設(shè)BE=ED=x,則AE=12x

根據(jù)勾股定理:

解得:x=7.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù),下列結(jié)論錯(cuò)誤的是(

A.若兩點(diǎn)A(),B()在該函數(shù)圖象上,且,則

B.函數(shù)的圖象不經(jīng)過(guò)第三象限

C.函數(shù)的圖象向下平移4個(gè)單位長(zhǎng)度得到的圖象

D.函數(shù)的圖象與軸的交點(diǎn)坐標(biāo)是(0,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)家趙爽的“勾股圓方圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成一個(gè)大正方形(如圖所示),如果大正方形的面積是64,小正方形的面積為4,直角三角形的兩直角邊長(zhǎng)分別為ab,且a> b . 那么下列結(jié)論:(1a2+b2=64,(2ab=2,(3ab=30,(4a+b=2.正確結(jié)論的個(gè)數(shù)有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖.在△ABC中,AD是邊BC上的中線,過(guò)點(diǎn)A作AE∥BC,過(guò)點(diǎn)D作與DE∥AB,DE與AC、AE分別交于點(diǎn)O、E,連接EC.

(1)求證:AD=EC;

(2)當(dāng)△ABC滿足  時(shí),四邊形ADCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(3,2),B(4,3),C(1,1).

(1)在圖中作出ABC關(guān)于y軸對(duì)稱的;

(2)寫出點(diǎn),,的坐標(biāo)(直接寫答案): ___;___;___;

(3)的面積為___;

(4)y軸上畫出點(diǎn)P,使PB+PC最小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx+c(a0)的圖象如圖,給出下列四個(gè)結(jié)論:

①b24ac0;

②4a2b+c0

③3b+2c0;

④m(am+b)ab(m≠﹣1),

其中正確結(jié)論的個(gè)數(shù)是( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B、C是三個(gè)垃圾存放點(diǎn),點(diǎn)B、C分別位于點(diǎn)A的正北和正東方向,AC=200米,編號(hào)為1﹣6號(hào)的6名同學(xué)分別測(cè)得C的度數(shù)如下表:

1號(hào)

2號(hào)

3號(hào)

4號(hào)

5號(hào)

6號(hào)

C(單位:度)

37

36

37

40

34

38

他們又調(diào)查了各點(diǎn)的垃圾量,并繪制了下列尚不完整的統(tǒng)計(jì)圖,如圖:

(1)求表中C度數(shù)的平均數(shù),眾數(shù)和中位數(shù);

(2)求A處的垃圾量,并將圖2補(bǔ)充完整;

(3)用(1)中的作為C的度數(shù),要將A處的垃圾沿道路AB都運(yùn)到B處,已知運(yùn)送1千克垃圾每米的費(fèi)用為0.005元,求運(yùn)垃圾所需的費(fèi)用:(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)A(1,0),B(3,1),C(3,3),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)D.

(1)求點(diǎn)D的坐標(biāo)及反比例函數(shù)的解析式;

(2)經(jīng)過(guò)點(diǎn)C的一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于P點(diǎn),當(dāng)k>0時(shí),確定點(diǎn)P橫坐標(biāo)的取值范圍(不必寫出過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線與x軸的交點(diǎn)坐標(biāo)分別為A(1,0),B(x2,0)(點(diǎn)B在點(diǎn)A的右側(cè)),其對(duì)稱軸是x=3,該函數(shù)有最小值是﹣2.

(1)求二次函數(shù)解析式;

(2)在圖1上作平行于x軸的直線,交拋物線于C(x3,y3),D(x4,y4),求x3+x4的值;

(3)將(1)中函數(shù)的部分圖象(x>x2)向下翻折與原圖象未翻折的部分組成圖象“G”,如圖2,在(2)中平行于x軸的直線取點(diǎn)E(x5,y5)、(x4<x5),結(jié)合函數(shù)圖象求x3+x4+x5的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案