【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn)、(點(diǎn)在點(diǎn)右側(cè)),點(diǎn)為拋物線的頂點(diǎn).點(diǎn)在軸的正半軸上,交軸于點(diǎn),繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,點(diǎn)恰好旋轉(zhuǎn)到點(diǎn),連接.
(1)求點(diǎn)、、的坐標(biāo);
(2)求證:四邊形是平行四邊形;
(3)如圖2,過頂點(diǎn)作軸于點(diǎn),點(diǎn)是拋物線上一動(dòng)點(diǎn),過點(diǎn)作軸,點(diǎn)為垂足,使得與相似(不含全等).
①求出一個(gè)滿足以上條件的點(diǎn)的橫坐標(biāo);
②直接回答這樣的點(diǎn)共有幾個(gè)?
【答案】(1),,;(2)證明見解析;(3)①點(diǎn)P的橫坐標(biāo)為,,,②點(diǎn)P共有3個(gè).
【解析】
(1)令y=0,可得關(guān)于x的方程,解方程求得x的值即可求得A、B兩點(diǎn)的坐標(biāo),對(duì)解析式配方可得頂點(diǎn)D的坐標(biāo);
(2)由,CO⊥AF,可得OF=OA=1,如圖2,易得,由此可得,繼而證明為等邊三角形,推導(dǎo)可得,再由,,可得,問題得證;
(3)①設(shè)點(diǎn)的坐標(biāo)為,分三種情況:點(diǎn)在點(diǎn)左側(cè),點(diǎn)在點(diǎn)右側(cè),點(diǎn)在之間,分別討論即可得;
②由①的結(jié)果即可得.
(1)令,
解得或,
故,,
配方得,故;
(2)∵,CO⊥AF,
∴OF=OA=1,
如圖,DD1⊥軸,∴DD1//CO,
∴,
∴,
即,
∴,
∴CF==2,
∴,
即為等邊三角形,
∴∠AFC=∠ACF=60°,
∵∠ECF=∠ACF,
∴,
∴,
∵CF:DF=OF:FD1=1:2,
∴DF=4,∴CD=6,
又∵,,
∴,
∴四邊形是平行四邊形;
(3)①設(shè)點(diǎn)的坐標(biāo)為,
(ⅰ)當(dāng)點(diǎn)在點(diǎn)左側(cè)時(shí),
因?yàn)?/span>與相似,
則1),
即,
∴(舍),x2=-11;
2),
即,
∴(舍),;
(ⅱ)當(dāng)點(diǎn)在點(diǎn)右側(cè)時(shí),
因?yàn)?/span>與相似,
則3),
即,
∴(舍),(舍);
4),
即,
∴(舍),(舍);
(ⅲ)當(dāng)點(diǎn)在之間時(shí),
∵與相似,
則5),
即,
∴(舍),(舍);
6),
即,
∴(舍),;
綜上所述,點(diǎn)的橫坐標(biāo)為,,;
②由①可得這樣的點(diǎn)P共有3個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙施工隊(duì)分別從兩端修一段長度為380米的公路.在施工過程中,乙隊(duì)曾因技術(shù)改進(jìn)而停工一天,之后加快了施工進(jìn)度并與甲隊(duì)共同按期完成了修路任務(wù).下表是根據(jù)每天工程進(jìn)度繪制而成的.
施工時(shí)間/天 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
累計(jì)完成施工量/米 | 35 | 70 | 105 | 140 | 160 | 215 | 270 | 325 | 380 |
下列說法錯(cuò)誤的是( )
A. 甲隊(duì)每天修路20米
B. 乙隊(duì)第一天修路15米
C. 乙隊(duì)技術(shù)改進(jìn)后每天修路35米
D. 前七天甲,乙兩隊(duì)修路長度相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市自開展“學(xué)習(xí)新思想,做好接班人”主題閱讀活動(dòng)以來,受到各校的廣泛關(guān)注和同學(xué)們的積極響應(yīng),某校為了解全校學(xué)生主題閱讀的情況,隨機(jī)抽查了部分學(xué)生在某一周主題閱讀文章的篇數(shù),并制成下列統(tǒng)計(jì)圖表.
某校抽查的學(xué)生文章閱讀的篇數(shù)統(tǒng)計(jì)表
文章閱讀的篇數(shù)(篇) | 3 | 4 | 5 | 6 | 7及以上 |
人數(shù)(人) | 20 | 28 | m | 16 | 12 |
請(qǐng)根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:
(1)求被抽查的學(xué)生人數(shù)和的值;
(2)求本次抽查的學(xué)生文章閱讀篇數(shù)的中位數(shù)和眾數(shù);
(3)若該校共有800名學(xué)生,根據(jù)抽查結(jié)果估計(jì)該校學(xué)生在這一周內(nèi)文章閱讀的篇數(shù)為4篇的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C為半圓的中點(diǎn),AB是直徑,點(diǎn)D是半圓上一點(diǎn),AC,BD交于點(diǎn)E.若AD=1,BD=7,則CE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校教學(xué)樓與實(shí)驗(yàn)樓的水平間距米,在實(shí)驗(yàn)樓頂部點(diǎn)測得教學(xué)樓頂部點(diǎn)的仰角是,底部點(diǎn)的俯角是,則教學(xué)樓的高度是____米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)求證:無論為任何實(shí)數(shù),此方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程的兩個(gè)實(shí)數(shù)根為、,滿足,求的值;
(3)若△的斜邊為5,另外兩條邊的長恰好是方程的兩個(gè)根、,求的內(nèi)切圓半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)雞場有5000只雞準(zhǔn)備對(duì)外出售。從中隨機(jī)抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:kg),繪制出如下的統(tǒng)計(jì)圖①和圖②。請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
Ⅰ.圖①中的值為 ;
Ⅱ.求統(tǒng)計(jì)的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
Ⅲ.根據(jù)樣本數(shù)據(jù),估計(jì)這5000只雞中,質(zhì)量為1.0kg的約為多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)抽取了40名學(xué)生參加“平均每周課外閱讀時(shí)間”的調(diào)查,由調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.
組別 | 時(shí)間/小時(shí) | 頻數(shù)/人數(shù) |
A組 | 2 | |
B組 | m | |
C組 | 10 | |
D組 | 12 | |
E組 | 7 | |
F組 | 4 |
頻數(shù)分布表
請(qǐng)根據(jù)圖表中的信息解答下列問題:
(1)求頻數(shù)分布表中m的值;
(2)求B組,C組在扇形統(tǒng)計(jì)圖中分別對(duì)應(yīng)扇形的圓心角度數(shù),并補(bǔ)全扇形統(tǒng)計(jì)圖;
(3)已知F組的學(xué)生中,只有1名男生,其余都是女生,用列舉法求以下事件的概率:從F組中隨機(jī)選取2名學(xué)生,恰好都是女生。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)某體育館計(jì)劃從一家體育用品商店一次性購買若干個(gè)氣排球和籃球(每個(gè)氣排球的價(jià)格都相同,每個(gè)籃球的價(jià)格都相同).經(jīng)洽談,購買1個(gè)氣排球和2個(gè)籃球共需210元;購買2個(gè)氣排球和3個(gè)籃球共需340元.
(1)每個(gè)氣排球和每個(gè)籃球的價(jià)格各是多少元?
(2)該體育館決定從這家體育用品商店一次性購買氣排球和籃球共50個(gè),總費(fèi)用不超過3200元,且購買氣排球的個(gè)數(shù)少于30個(gè),應(yīng)選擇哪種購買方案可使總費(fèi)用最低?最低費(fèi)用是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com