【題目】如圖,某校教學樓與實驗樓的水平間距米,在實驗樓頂部點測得教學樓頂部點的仰角是,底部點的俯角是,則教學樓的高度是____米(結果保留根號).
【答案】(15+15)
【解析】
過點B作BM⊥AC,垂足為E,則∠ABE=30°,∠CBE=45°,四邊形CDBE是矩形,繼而證明∠CEB=∠CBE,從而可得CE長,在Rt△ABE中,利用tan∠ABE=,求出AE長,繼而可得AC長.
過點B作BM⊥AC,垂足為E,
則∠ABE=30°,∠CBE=45°,四邊形CDBE是矩形,
∴BE=CD=15,
∵∠CEB=90°,
∴∠CEB=90°-∠CBE=45°=∠CBE,
∴CE=BE=15,
在Rt△ABE中,tan∠ABE=,
即,
∴AE=15,
∴AC=AE+CE=15+15,
即教學樓AC的高度是(15+15)米,
故答案為:(15+15).
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:
類比定義:我們知道:分式和分數(shù)有著很多的相似點.如類比分數(shù)的基本性質,我們得到了分式的基本性質;類比分數(shù)的運算法則,我們得到了分式的運算法則等等.小學里,把分子比分母小的分數(shù)叫做真分數(shù),類似地,我們把分子整式的次數(shù)小于分母整式的次數(shù)的分式稱為真分式;反之,稱為假分式.
拓展定義:
對于任何一個分式都可以化成整式與真分式的和的形式,
如:;
.
理解定義:
(1)下列分式中,屬于真分式的是:____屬于假分式的是:_____(填序號)
①;②;③;④.
拓展應用:
(2)將分式化成整式與真分式的和的形式;
(3)將假分式化成整式與真分式的和的形式。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,,AD=9,點P是AD邊上的一個動點,連接BP,將矩形ABCD沿BP折疊,得到△A1PB,連接A1C,取A1C的三等分點Q(CQ<A1Q),當點P從點A出發(fā),沿邊AD運動到點D時停止運動,點Q的運動路徑長為( 。
A.πB.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】龍蝦狂歡季再度開啟,第屆中國合肥龍蝦節(jié)的主題是“讓你知蝦,也知稻”,稻田小龍蝦養(yǎng)殖技術在合肥周邊的鄉(xiāng)鎮(zhèn)大力推廣,已知每千克小龍蝦養(yǎng)殖成本為元,在整個銷售旺季的天里,銷售單價元/千克,與時間(天)之間的函數(shù)關系式為:,日銷售量(千克)與時間第(天)之間的函數(shù)關系如圖所示:
(1)求日銷售量與時間的函數(shù)關系式?
(2)哪一天的日銷售利潤最大?最大利潤是多少?
(3)在實際銷售的前天中,該養(yǎng)殖戶決定銷售千克小龍蝦,就捐贈元給村里的特困戶,在這前天中,每天扣除捐贈后的日銷售利潤隨時間的增大而增大,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,D,E,F分別是AB,BC,AC的中點,連結DF,EF,BF.
(1)求證:四邊形BEFD是平行四邊形;
(2)若∠AFB=90°,AB=4,求四邊形BEFD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結論:①無論x取何值,y2的值總是正數(shù);②a=;③當x=0時,y2﹣y1=6;④AB+AC=10;其中正確結論的個數(shù)是( )
A.①②④B.①③④C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明投擲一次骰子,向上一面的點數(shù)記為,再投擲一次骰子,向上一面的點數(shù)記為,這樣就確定點的一個坐標,那么點落在雙曲線上的概率為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC和△DEF均為等腰直角三角形,AB=2,DE=1,E、B、F、C在同一條直線上,開始時點B與點F重合,讓△DEF沿直線BC向右移動,最后點C與點E重合,設兩三角形重合面積為y,點F移動的距離為x,則y關于x的大致圖象是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com