【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,∠BCD=120°,CA平分∠BCD.
(1)求證:△ABD是等邊三角形;
(2)若BD=3,求⊙O的半徑.
【答案】(1)詳見解析;(2).
【解析】
(1)因?yàn)?/span>AC平分∠BCD,∠BCD=120°,根據(jù)角平分線的定義得:∠ACD=∠ACB=60°,根據(jù)同弧所對(duì)的圓周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根據(jù)三個(gè)角是60°的三角形是等邊三角形得△ABD是等邊三角形.(2)作直徑DE,連結(jié)BE,由于△ABD是等邊三角形,則∠BAD=60°,由同弧所對(duì)的圓周角相等,得∠BED=∠BAD=60°.根據(jù)直徑所對(duì)的圓周角是直角得,∠EBD=90°,則∠EDB=30°,進(jìn)而得到DE=2BE.設(shè)EB=x,則ED=2x,根據(jù)勾股定理列方程求解即可.
解:(1)∵∠BCD=120°,CA平分∠BCD,
∴∠ACD=∠ACB=60°,
由圓周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,
∴△ABD是等邊三角形;
(2)連接OB、OD,作OH⊥BD于H,
則DH=BD=,
∠BOD=2∠BAD=120°,
∴∠DOH=60°,
在Rt△ODH中,OD==,
∴⊙O的半徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,PA切⊙O于點(diǎn)A,點(diǎn)B是⊙O上的一點(diǎn),且∠BAC=30°,∠APB=60°.
(1)求證:PB是⊙O的切線;
(2)若⊙O的半徑為2,求弦AB及PA,PB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校運(yùn)動(dòng)會(huì)需購(gòu)買A,B兩種獎(jiǎng)品,若購(gòu)買A種獎(jiǎng)品3件和B種獎(jiǎng)品2件,共需60元;若購(gòu)買A種獎(jiǎng)品5件和B種獎(jiǎng)品3件,共需95元.
(1)求A、B兩種獎(jiǎng)品的單價(jià)各是多少元?
(2)學(xué)校計(jì)劃購(gòu)買A、B兩種獎(jiǎng)品共100件,購(gòu)買費(fèi)用不超過1150元,且A種獎(jiǎng)品的數(shù)量不大于B種獎(jiǎng)品數(shù)量的3倍,設(shè)購(gòu)買A種獎(jiǎng)品m件,購(gòu)買費(fèi)用為W元,寫出W(元)與m(件)之間的函數(shù)關(guān)系式.求出自變量m的取值范圍,并確定最少費(fèi)用W的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線 y=x2+2x 的頂點(diǎn)為 A,直線 y=x+2 與拋物線交于 B,C 兩點(diǎn).
(1)求 A,B,C 三點(diǎn)的坐標(biāo);
(2)作 CD⊥x 軸于點(diǎn) D,求證:△ODC∽△ABC;
(3)若點(diǎn) P 為拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn) P 作 PM⊥x 軸于點(diǎn) M,則是否還存在除 C 點(diǎn)外的其他位置的點(diǎn),使以 O,P,M 為頂點(diǎn)的三角形與△ABC 相似? 若存在,請(qǐng)求出這樣的 P 點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E,F在菱形ABCD的對(duì)邊上,AE⊥BC.∠1=∠2.
(1)判斷四邊形AECF的形狀,并證明你的結(jié)論.
(2)若AE=4,AF=2,試求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年,重慶市南岸區(qū)廣陽鎮(zhèn)一果農(nóng)李燦收獲枇杷20噸,桃子12噸,現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛將這批水果全部運(yùn)往外地銷售,已知一輛甲種貨車可裝枇杷4噸和桃子1噸,一輛乙種貨車可裝枇杷和桃子各2噸.李燦安排甲、乙兩種貨車一次性地將水果運(yùn)到銷售地的方案數(shù)有( )
A.1種B.2種C.3種D.4種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑作⊙O,交AC于點(diǎn)D,連接DB,過點(diǎn)D作DE⊥BC,垂足為E.
(1)求證:AD=CD.
(2)求證:DE為⊙O的切線.
(3)若∠C=60°,DE=,求⊙O半徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形材料,高線AH長(zhǎng)8 cm,底邊BC長(zhǎng)10 cm,要把它加工成一個(gè)矩形零件,使矩形DEFG的一邊EF在BC上,其余兩個(gè)頂點(diǎn)D,G分別在AB,AC上,則四邊形DEFG的最大面積為( )
A. 40 cm2 B. 20 cm2
C. 25 cm2 D. 10 cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,給出下列結(jié)論:
①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個(gè)數(shù)有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com