【題目】如圖△ABC內接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若PD=,求⊙O的直徑.
【答案】(1)證明見解析;(2)⊙O的直徑為2.
【解析】
(1)連接OA,根據(jù)圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,繼而由∠OAP=∠AOC-∠P,可得出OA⊥PA,從而得出結論;
(2)利用含30°的直角三角形的性質求出OP=2OA,可得出OP-PD=OD,再由 可得出⊙O的直徑.
(1)證明:連接OA,
∵∠B=60°,
∴∠AOC=2∠B=120°,
又∵OA=OC,
∴∠OAC=∠OCA=30°,
又∵AP=AC,
∴∠P=∠ACP=30°,
∴∠OAP=∠AOC﹣∠P=90°,
∴OA⊥PA,
∴PA是⊙O的切線.
(2)在Rt△OAP中,∵∠P=30°,
∴PO=2OA=OD+PD,
又∵OA=OD,
∴PD=OA,
∵
∴
∴⊙O的直徑為
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=110°,點E、G分別是AB、AC的中點,DE⊥AB交BC于D,FG⊥AC交BC于F,連接AD、AF.試求∠DAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,連接在一起的兩個等邊三角形的邊長都為1cm,一個微型機器人由點A開始按A→B→C→D→E→C→A→B→C…的順序沿等邊三角形的邊循環(huán)移動.當微型機器人移動了2019cm后,它停在了點_____上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點D為⊙O上一點,且CD=CB、連接DO并延長交CB的延長線于點E.
(1)判斷直線CD與⊙O的位置關系,并說明理由;
(2)若BE=4,DE=8,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是△ABC外接圓上的動點,且B,D位于AC的兩側,DE⊥AB,垂足為E,DE的延長線交此圓于點F.BG⊥AD,垂足為G,BG交DE于點H,DC,F(xiàn)B的延長線交于點P,且PC=PB.
(1)求證:BG∥CD;
(2)設△ABC外接圓的圓心為O,若AB=DH,∠OHD=80°,求∠BDE的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將矩形紙片分別沿兩條不同的直線剪兩刀,可以使剪得的三塊紙片恰能拼成一個等腰三角形(不能有重疊和縫隙).小華的做法是:如圖1所示,在矩形ABCD中,分別取AD、AB、CD的中點P、E、F,并沿直線PE 、PF剪兩刀,所得的三部分可拼成等腰三角形△PMN (如圖2).
(1)在圖3中畫出另一種剪拼成等腰三角形的示意圖;
(2)以矩形ABCD的頂點B為原點,BC所在直線為x軸建立平面直角坐標系(如圖4),矩形ABCD剪拼后得到等腰三角形△PMN,點P在邊AD上(不與點A、D重合),點M、N在x軸上(點M在N的左邊).如果點D的坐標為(5,8),直線PM的解析式為y=kx+b,求所有滿足條件的k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,已知點A(-1,4),B(-2,2),C(1,1).
(1)作ΔABC關于x軸對稱的△A1B1C1,并寫出點A1,B1,C1的坐標,
(2)作△ABC關于y軸對稱的△A2B2C2,并寫出點A2,B2,C2的坐標,
(3)觀察點A1,B1,C1和A2,B2,C2的坐標,請用文字語言歸納點A1和A2,B1和B2,C1和C2坐標之間的關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com