【題目】如圖1,在△ABC中,∠A=30°,點(diǎn)P從點(diǎn)A出發(fā)以2cm/s的速度沿折線A—C—B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A出發(fā)以a(cm/s)的速度沿AB運(yùn)動(dòng),P,Q兩點(diǎn)同時(shí)出發(fā),當(dāng)某一點(diǎn)運(yùn)動(dòng)到點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x(s),△APQ的面積為y(cm2),y關(guān)于x的函數(shù)圖象由C1 , C2兩段組成,如圖2所示.

(1)求a的值;
(2)求圖2中圖象C2段的函數(shù)表達(dá)式;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段BC上某一段時(shí)△APQ的面積,大于當(dāng)點(diǎn)P在線段AC上任意一點(diǎn)時(shí)△APQ的面積,求x的取值范圍.

【答案】
(1)

解:在圖1中,過(guò)P作PD⊥AB于D,∵∠A=30°,PA=2x,

∴PD=PA·sin30°=2x· =x,

∴y= = .

由圖象得,當(dāng)x=1時(shí),y= ,則 = .

∴a=1.


(2)

解:當(dāng)點(diǎn)P在BC上時(shí)(如圖2),PB=5×2-2x=10-2x.

∴PD=PB·sinB=(10-2x)·sinB,

∴y= AQ·PD= x·(10-2x)·sinB.

由圖象得,當(dāng)x=4時(shí),y= ,

×4×(10-8)·sinB= ,

∴sinB= .

∴y= x·(10-2x)· = .


(3)

解:由C1,C2的函數(shù)表達(dá)式,得 = ,

解得x1=0(舍去),x2=2,

由圖易得,當(dāng)x=2時(shí),函數(shù)y= 的最大值為y= .

將y=2代入函數(shù)y= ,得2= .

解得x1=2,x2=3,

∴由圖象得,x的取值范圍是2<x<3.


【解析】(1)C1段的函數(shù)解析式是點(diǎn)P在AC線段時(shí)y與x的關(guān)系,由S= AQ·(AQ上的高),而AQ=ax,由∠A=30°,PA=2x,可過(guò)P作PD⊥AB于D,則PD=PA·sin30°=2x· =x,則可寫(xiě)出y關(guān)于x的解析式,代入點(diǎn)(1, )即可解出;(2)作法與(1)同理,求出用sinB表示出PD,再寫(xiě)出y與x的解析式,代入點(diǎn)(4, ),即可求出sinB,即可解答;(3)題中表示在某x的取值范圍內(nèi)C1<C2 , 即此時(shí)C2的y值大于C1的y值的最大值,由圖易得,當(dāng)x=2時(shí),函數(shù)y= 的最大值為y= .將y=2代入函數(shù)y= ,求出x的值,根據(jù)函數(shù)y= ,的開(kāi)口向下,則可得x的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)的圖象和二次函數(shù)的性質(zhì),需要了解二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在面積為12的平行四邊形ABCD中,過(guò)點(diǎn)A作直線BC的垂線交BC于點(diǎn)E,過(guò)點(diǎn)A作直線CD的垂線交CD于點(diǎn)F,若,則的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,∠C=90°,AC=BC= ,將△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°到△AB′C′的位置,連接C′B.
(1)請(qǐng)你在圖中把圖補(bǔ)畫(huà)完整;
(2)求C′B的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)開(kāi)展了手機(jī)伴我健康行主題活動(dòng).他們隨機(jī)抽取部分學(xué)生進(jìn)行手機(jī)使用目的每周使用手機(jī)時(shí)間的問(wèn)卷調(diào)查,并繪制成如圖的統(tǒng)計(jì)圖。已知查資料人人數(shù)是40人。

請(qǐng)你根據(jù)以上信息解答以下問(wèn)題

1)在扇形統(tǒng)計(jì)圖中,玩游戲對(duì)應(yīng)的圓心角度數(shù)是_______________

2)補(bǔ)全條形統(tǒng)計(jì)圖

3)該校共有學(xué)生1200人,估計(jì)每周使用手機(jī)時(shí)間在2小時(shí)以上(不含2小時(shí))的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)擬建一間矩形種牛飼養(yǎng)室,飼養(yǎng)室的一面靠現(xiàn)有墻(墻足夠長(zhǎng)),已知計(jì)劃中的建筑材料可建圍墻的總長(zhǎng)為為50m.設(shè)飼養(yǎng)室長(zhǎng)為x(m),占地面積為y(m2).


(1)如圖1,問(wèn)飼養(yǎng)室長(zhǎng)x為多少時(shí),占地面積y最大?
(2)如圖2,現(xiàn)要求在圖中所示位置留2m寬的門(mén),且仍使飼養(yǎng)室的占地面積最大。小敏說(shuō):“只要飼養(yǎng)室長(zhǎng)比(1)中的長(zhǎng)多2m就行了.”

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為做好食堂的服務(wù)工作,某學(xué)校食堂對(duì)學(xué)生最喜愛(ài)的菜肴進(jìn)行了抽樣調(diào)查,下面試根據(jù)收集的數(shù)據(jù)繪制的統(tǒng)計(jì)圖(不完整):

(1)參加抽樣調(diào)查的學(xué)生數(shù)是______人,扇形統(tǒng)計(jì)圖中“大排”部分的圓心角是______°;

(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若全校有3000名學(xué)生,請(qǐng)你根據(jù)以上數(shù)據(jù)估計(jì)最喜愛(ài)“烤腸”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列3×3網(wǎng)格圖都是由9個(gè)相同的小正方形組成,每個(gè)網(wǎng)格圖中有3個(gè)小正方形已涂上陰影,請(qǐng)?jiān)谟嘞碌?/span>6個(gè)空白小正方形中,按下列要求涂上陰影:

(1)選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)軸對(duì)稱圖形,但不是中心對(duì)稱圖形;

(2)選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)中心對(duì)稱圖形,但不是軸對(duì)稱圖形;

(3)選取2個(gè)涂上陰影,使5個(gè)陰影小正方形組成一個(gè)軸對(duì)稱圖形.

(請(qǐng)將三個(gè)小題依次作答在圖1、圖2、圖3中,均只需畫(huà)出符合條件的一種情形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有顏色不同的黃、白兩種顏色的球共5只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù) 下表是活動(dòng)中的一組統(tǒng)計(jì)數(shù)據(jù):

(1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近______;(精確到0.1)

(2)試估算口袋中白種顏色的球有多少只?

(3)請(qǐng)你設(shè)計(jì)一個(gè)增(減)袋中白球或黃球球個(gè)數(shù)的方案,使得從袋中摸出一個(gè)球,這只球是黃球的概率大于是白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABC=2∠D,連接OC、OA、AC.
(1)如圖①,求∠OCA的度數(shù);
(2)如圖②,連接OB、OB與AC相交于點(diǎn)E,若∠COB=90°,OC=2 ,求BC的長(zhǎng)和陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案