【題目】關(guān)于的方程的整數(shù)解()的組數(shù)為( ).
A. 2組B. 3組C. 4組D. 無窮多組
【答案】C
【解析】
根據(jù)原方程的形式,將其看成是關(guān)于x的方程,則字母y變成方程的參數(shù)系數(shù),利用一元二次方程根的判別式得△=y2-4(2y2-29)=-7y2+116≥0,再根據(jù)方程有整數(shù)解,說明這個(gè)根的判斷式應(yīng)該是平方數(shù),由此可能得到的y2的取值為0、1、4、9或16,再經(jīng)過討論,可以得到符合題目的四組整數(shù)解.
解:可將原方程視為關(guān)于的二次方程,將其變形為.
由于該方程有整數(shù)根,則判別式≥,且是完全平方數(shù).
由≥,
解得≤,于是
顯然,只有時(shí),是完全平方數(shù),符合要求.
當(dāng)時(shí),原方程為,此時(shí);
當(dāng)y=-4時(shí),原方程為,此時(shí).
所以,原方程的整數(shù)解為
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)矩形的一邊是另一邊的兩倍,則稱這個(gè)矩形為方形.如圖1,矩形中,,則稱為方形.
(Ⅰ)設(shè)是方形的一組鄰邊,寫出的一組值為__________;
(Ⅱ)在中,將分別五等分,連結(jié)兩邊對(duì)應(yīng)的等分點(diǎn),以這些連結(jié)線為一邊作矩形,使得這些矩形的邊的對(duì)邊分別在上,如圖2所示.
①若,邊上的高為,判斷以為一邊的矩形是否是方形?_________(填“是”或“否”);②若以為一邊的矩形為方形,則與邊上的高之比為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣積極響應(yīng)市政府加大產(chǎn)業(yè)扶貧力度的號(hào)召,決定成立草莓產(chǎn)銷合作社,負(fù)責(zé)扶貧對(duì)象戶種植草莓的技術(shù)指導(dǎo)和統(tǒng)一銷售,所獲利潤(rùn)年底分紅.經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),草莓銷售單價(jià)(萬元)與產(chǎn)量x(噸)之間的關(guān)系如圖所示.已知草莓的產(chǎn)銷投入總成本(萬元)與產(chǎn)量x(噸)之間滿足.
(1)直接寫出草莓銷售單價(jià)(萬元)與產(chǎn)量(噸)之間的函數(shù)關(guān)系式;
(2)求該合作社所獲利潤(rùn)(萬元)與產(chǎn)量(噸)之間的函數(shù)關(guān)系式;
(3)為提高農(nóng)民種植草莓的積極性,合作社決定按萬元/噸的標(biāo)準(zhǔn)獎(jiǎng)勵(lì)扶貧對(duì)象種植戶,為確保合作社所獲利潤(rùn)(萬元)不低于萬元,產(chǎn)量至少要達(dá)到多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一種適用于筆記本電腦的鋁合金支架,邊,可繞點(diǎn)開合,在邊上有一固定點(diǎn),支柱可繞點(diǎn)轉(zhuǎn)動(dòng),邊上有六個(gè)卡孔,其中離點(diǎn)最近的卡孔為,離點(diǎn)最遠(yuǎn)的卡孔為.當(dāng)支柱端點(diǎn)放入不同卡孔內(nèi),支架的傾斜角發(fā)生變化.將電腦放在支架上,電腦臺(tái)面的角度可達(dá)到六檔調(diào)節(jié),這樣更有利于工作和身體健康.現(xiàn)測(cè)得的長(zhǎng)為,為,支柱為.
(1)當(dāng)支柱的端點(diǎn)放在卡孔處時(shí),求的度數(shù);
(2)當(dāng)支柱的端點(diǎn)放在卡孔處時(shí),,若相鄰兩個(gè)卡孔的距離相同,求此間距.(結(jié)果精確到十分位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十八大以來,某校已舉辦五屆校園藝術(shù)節(jié).為了弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,每屆藝術(shù)節(jié)上都有一些班級(jí)表演“經(jīng)典誦讀”、“民樂演奏”、“歌曲聯(lián)唱”、“民族舞蹈”等節(jié)目.小穎對(duì)每屆藝術(shù)節(jié)表演這些節(jié)目的班級(jí)數(shù)進(jìn)行統(tǒng)計(jì),并繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)五屆藝術(shù)節(jié)共有________個(gè)班級(jí)表演這些節(jié)日,班數(shù)的中位數(shù)為________,在扇形統(tǒng)計(jì)圖中,第四屆班級(jí)數(shù)的扇形圓心角的度數(shù)為________;
(2)補(bǔ)全折線統(tǒng)計(jì)圖;
(3)第六屆藝術(shù)節(jié),某班決定從這四項(xiàng)藝術(shù)形式中任選兩項(xiàng)表演(“經(jīng)典誦讀”、“民樂演奏”、“歌曲聯(lián)唱”、“民族舞蹈”分別用,,,表示).利用樹狀圖或表格求出該班選擇和兩項(xiàng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線與直線相交于A、B兩點(diǎn).第一象限上的點(diǎn)M(m,n)(在A點(diǎn)左側(cè))是雙曲線上的動(dòng)點(diǎn).過點(diǎn)B作BD∥y軸交x軸于點(diǎn)D.過N(0,-n)作NC∥x軸交雙曲線于點(diǎn)E,交BD于點(diǎn)C.
(1)若點(diǎn)D坐標(biāo)是(-8,0),求A、B兩點(diǎn)坐標(biāo)及k的值.
(2)若B是CD的中點(diǎn),四邊形OBCE的面積為4,求直線CM的解析式.
(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點(diǎn),且MA=pMP,MB=qMQ,求p-q的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),拋物線y1=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A(x1,0),B(x2,0),與y軸交于點(diǎn)C,且O,C兩點(diǎn)間的距離為3,x1x2<0,|x1|+|x2|=4,點(diǎn)A,C在直線y2=-3x+t上.
(1)求點(diǎn)C的坐標(biāo);
(2)當(dāng)y1隨著x的增大而增大時(shí),求自變量x的取值范圍;
(3)將拋物線y1向左平移n(n>0)個(gè)單位,記平移后y隨著x的增大而增大的部分為P,直線y2向下平移n個(gè)單位,當(dāng)平移后的直線與P有公共點(diǎn)時(shí),求2n2-5n的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系第一象限中有正方形,,點(diǎn)是軸上一動(dòng)點(diǎn),將沿直線翻折后,點(diǎn)落在點(diǎn)處。在上有一點(diǎn),使得將沿直線翻折后,點(diǎn)落在直線上的點(diǎn)處,直線交于點(diǎn),連接.
I.求證:;
Ⅱ.求與的函數(shù)關(guān)系式,并求出的最大值;
Ⅲ.當(dāng)時(shí),直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(b,c為常數(shù)).
(1)若拋物線的頂點(diǎn)坐標(biāo)為(1,1),求b,c的值;
(2)若拋物線上始終存在不重合的兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,求c的取值范圍;
(3)在(1)的條件下,存在正實(shí)數(shù)m,n( m<n),當(dāng)m≤x≤n時(shí),恰好有,求m,n的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com