【題目】如圖所示,一種適用于筆記本電腦的鋁合金支架,邊可繞點(diǎn)開(kāi)合,在邊上有一固定點(diǎn),支柱可繞點(diǎn)轉(zhuǎn)動(dòng),邊上有六個(gè)卡孔,其中離點(diǎn)最近的卡孔為,離點(diǎn)最遠(yuǎn)的卡孔為.當(dāng)支柱端點(diǎn)放入不同卡孔內(nèi),支架的傾斜角發(fā)生變化.將電腦放在支架上,電腦臺(tái)面的角度可達(dá)到六檔調(diào)節(jié),這樣更有利于工作和身體健康.現(xiàn)測(cè)得的長(zhǎng)為,,支柱.

(1)當(dāng)支柱的端點(diǎn)放在卡孔處時(shí),求的度數(shù);

(2)當(dāng)支柱的端點(diǎn)放在卡孔處時(shí),,若相鄰兩個(gè)卡孔的距離相同,求此間距.(結(jié)果精確到十分位)

【答案】(1);(2)相鄰兩個(gè)卡孔的間距為.

【解析】

1)作,垂足為點(diǎn),根據(jù)勾股定理,,故,在,可得的度數(shù);(2)作,垂足為點(diǎn),在中,根據(jù)三角函數(shù)求PE,OE, 中,求EQ,可得,可求出結(jié)果.

解:(1)如圖1,作,垂足為點(diǎn),

中,根據(jù)勾股定理,.

同理,(為同一點(diǎn)).

,,

,

解得.

,

,

.

(2)如圖2,作,垂足為點(diǎn),

中,.

.

中,,

.(,為同一點(diǎn))

.

.

∴相鄰兩個(gè)卡孔的間距為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).

三等分任意角問(wèn)題是數(shù)學(xué)史上一個(gè)著名的問(wèn)題,直到1837年,數(shù)學(xué)家才證明了三等分任意角是不能用尺規(guī)完成的.

在探索中,出現(xiàn)了不同的解決問(wèn)題的方法

方法一:

如圖(1),四邊形ABCD是矩形,FDA延長(zhǎng)線上一點(diǎn),GCF上一點(diǎn),CFAB交于點(diǎn)E,且∠ACG=∠AGC,∠GAF=∠F,此時(shí)∠ECBACB

方法二:

數(shù)學(xué)家帕普斯借助函數(shù)給出一種三等分銳角的方法(如圖(2)):將給定的銳角∠AOB置于平面直角坐標(biāo)系中,邊OBx軸上,邊OA與函數(shù)y的圖象交于點(diǎn)P,以點(diǎn)P為圓心,以2OP長(zhǎng)為半徑作弧交圖象于點(diǎn)R.過(guò)點(diǎn)Px軸的平行線,過(guò)點(diǎn)Ry軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠AOB,過(guò)點(diǎn)PPHx軸于點(diǎn)H,過(guò)點(diǎn)RRQPH于點(diǎn)Q,則∠MOBAOB

1)在方法一中,若∠ACF40°,GF4,求BC的長(zhǎng).

2)完成方法二的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù),與反比例函數(shù)交于點(diǎn)A3,1)、B(-1,n),y1y軸于點(diǎn)C,交x軸于點(diǎn)D

1)求反比例函數(shù)及一次函數(shù)的解析式;

2)求△OBD的面積;

3)根據(jù)圖象直接寫(xiě)出的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,.將ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到AB'C'(點(diǎn)BC的對(duì)應(yīng)點(diǎn)分別為點(diǎn)B,C),延長(zhǎng)CB分別交AC,BC于點(diǎn)DE,若DE2,則AD的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O的直徑AB=2,點(diǎn)DAB的延長(zhǎng)線上,DCO相切于點(diǎn)C,連接AC.若∠A=30°,CD長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形AOBC中,對(duì)角線交于點(diǎn)E,雙曲線y=(k>0)經(jīng)過(guò)A、E兩點(diǎn),若平行四邊形AOBC的面積為24,則k的值是( 。

A. 8B. 7.5C. 6D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于的方程的整數(shù)解()的組數(shù)為( ).

A. 2B. 3C. 4D. 無(wú)窮多組

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC.按如下步驟作圖:①以A為圓心,AB長(zhǎng)為半徑畫(huà)。虎谝C為圓心,CB長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)D;③連結(jié)BD,與AC交于點(diǎn)E,連結(jié)AD,CD

1)求證:△ABC≌△ADC;

2)若∠BAC30°,∠BCA45°,BC2

①求∠BAD所對(duì)的弧BD的長(zhǎng);②直接寫(xiě)出AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為九年級(jí)數(shù)學(xué)競(jìng)賽獲獎(jiǎng)選手購(gòu)買(mǎi)以下三種獎(jiǎng)品,其中小筆記本每本5元,大筆記本每本7元,鋼筆每支10元,購(gòu)買(mǎi)的大筆記本的數(shù)量是鋼筆數(shù)量的2倍,共花費(fèi)346元,若使購(gòu)買(mǎi)的獎(jiǎng)品總數(shù)最多,則這三種獎(jiǎng)品的購(gòu)買(mǎi)數(shù)量各為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案