【題目】如圖,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CDAB邊上的高.點(diǎn)E從點(diǎn)B出發(fā)在直線BC上以2cm/s的速度移動(dòng),過(guò)點(diǎn)EBC的垂線交直線CD于點(diǎn)F.當(dāng)點(diǎn)E運(yùn)動(dòng)________s時(shí),CF=AB.

【答案】52

【解析】

分點(diǎn)E在射線BC上移動(dòng)和點(diǎn)E在射線CB上移動(dòng)兩種情況求解即可.

如圖,當(dāng)點(diǎn)E在射線BC上移動(dòng)時(shí),CFAB.

∵∠AACD=90°,BCDACD=90°,

∴∠ABCD.

又∵∠ECFBCD,

∴∠AECF.

在△CFE與△ABC中,

∴△CFE≌△ABC(AAS),

CEAC=7cm,

BEBCCE=10cm,10÷2=5(s).

當(dāng)點(diǎn)E在射線CB上移動(dòng)時(shí),CFAB.

在△CFE與△ABC中,

∴△CFE≌△ABC(AAS),

CE′=AC=7cm,

BE′=CE′-CB=4cm,4÷2=2(s).

綜上可知,當(dāng)點(diǎn)E運(yùn)動(dòng)5s2s時(shí),CFAB.

故答案為:52.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),DOE的周長(zhǎng)為16,BD=12,則ABCD的周長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,O是等邊△ABC內(nèi)一點(diǎn),連接OA、OB、OC,且OA=3,OB=4,OC=5,將△BAO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)后得到△BCD,連接OD.求:

旋轉(zhuǎn)角的度數(shù);

線段OD的長(zhǎng);

③∠BDC的度數(shù).

(2)如圖2所示,O是等腰直角△ABC(∠ABC=90°)內(nèi)一點(diǎn),連接OA、OB、OC,將△BAO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)后得到△BCD,連接OD.當(dāng)OA、OB、OC滿足什么條件時(shí),∠ODC=90°?請(qǐng)給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面一段文字:

問題:能化為分?jǐn)?shù)形式嗎?

探求:步驟①設(shè),步驟②,

步驟③,則,

步驟④,解得:.

根據(jù)你對(duì)這段文字的理解,回答下列問題:

(1)步驟①到步驟②的依據(jù)是什么;

(2)仿照上述探求過(guò)程,請(qǐng)你嘗試把化為分?jǐn)?shù)形式:

(3)請(qǐng)你將化為分?jǐn)?shù)形式,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有下列四種結(jié)論:①AB=AD;②∠B=∠D;③∠BAC=∠DAC;④BC=DC.以其中的2個(gè)結(jié)論作為依據(jù)不能判定△ABC≌△ADC的是(  )

A. ①② B. ①③ C. ①④ D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O在等邊△ABC內(nèi),∠AOB=100°,∠BOC=x,將△BOC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得△ADC,連接OD.

(1)△COD的形狀是   ;

(2)當(dāng)x=150°時(shí),△AOD的形狀是   ;此時(shí)若OB=3,OC=5,求OA的長(zhǎng);

(3)當(dāng)x為多少度時(shí),△AOD為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形的A1B1P1P2頂點(diǎn)P1、P2在反比例函數(shù)y= (x>0)的圖象上,頂點(diǎn)A1、B1分別在x軸、y軸的正半軸上,再在其右側(cè)作正方形P2P3A2B2 , 頂點(diǎn)P3在反比例函數(shù)y= (x>0)的圖象上,頂點(diǎn)A2在x軸的正半軸上,則點(diǎn)P3的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).

(1)在圖中作出△ABC關(guān)于直線l對(duì)稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對(duì)應(yīng))

(2)在(1)問的結(jié)果下,連接BB1,CC1,求四邊形BB1C1C的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將5張都是10元的紙幣隨機(jī)裝入10個(gè)完全相同的信封中,設(shè)計(jì)以下幾種抽獎(jiǎng)游戲:

(1)游戲A:設(shè)計(jì)一個(gè)游戲,使任意抽取一個(gè)信封時(shí),能抽到紙幣的概率為;

(2)游戲B:設(shè)計(jì)一個(gè)游戲,使任意抽取一個(gè)信封時(shí),能抽到紙幣的概率為.

查看答案和解析>>

同步練習(xí)冊(cè)答案