【題目】為了推進(jìn)球類運動的發(fā)展,某校組織校內(nèi)球類運動會,分籃球、足球、排球、羽毛球、乒乓球五項,要求每位學(xué)生必須參加一項并且只能參加一項,某班有一名學(xué)生根據(jù)自己了解的班內(nèi)情況繪制了如圖所示的完整統(tǒng)計表和扇形統(tǒng)計圖.

請根據(jù)圖表中提供的信息,解答下列問題:

1)圖表中 ,

2)該班參加乒乓球活動的4位同學(xué)中,有3位男同學(xué)(分別用,,表示)和1位女同學(xué)(用表示),現(xiàn)準(zhǔn)備從中選出兩名同學(xué)參加比賽,用樹狀圖或列表法求出恰好選出一男一女的概率.

【答案】11620;(2)列表見解析,(一男一女);

【解析】

1)根據(jù)足球的人數(shù)和所占百分比,求出總?cè)藬?shù)即可求出m;用排球的人數(shù)除以總?cè)藬?shù)即可求出n

2)畫出樹狀圖,根據(jù)概率公式即可求解.

解:(1)總?cè)藬?shù)=(人),

m40686416(人),

n%,

n20,

故答案為16,20

2)樹狀圖如圖所示:

共有12種可能,一男一女有6種可能,

P(一男一女)=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸、軸分別相交于點A(-10)和B0,3),其頂點為D。

1)求這條拋物線的解析式;

2)畫出此拋物線;

3)若拋物線與軸的另一個交點為E,求ODE的面積;

4)拋物線的對稱軸上是否存在點P使得PAB的周長最短。若存在請求出點P的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,AD為邊BC上的中線,DEAC于點E

(1)請你寫出圖中所有與△CDE相似的三角形;

(2)AB10,BC12,求EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)在一次數(shù)學(xué)測驗中解答的填空題,其中答對的是(

A.,則x=2B.的一個根是1,則k=2

C.,則x=2D. 的值為0,則x=12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點C1,2)分別作x軸、y軸的平行線,交直線y=-x+6A,B兩點,若反比例函數(shù) x0)的圖像與ABC有公共點,則k的取值范圍是(

A. 2≤k≤8 B. 2≤k≤9 C. 2≤k≤5 D. 5≤k≤8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與雙曲線)交于,兩點,且點的橫坐標(biāo)為6.

1)求的值;

2)若雙曲線)上一點的縱坐標(biāo)為9,求的面積;

3)過原點的另一條直線交雙曲線)于兩點(點在第一象限),若由點,,為頂點組成的四邊形面積為96,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點和點,與軸交于另一點

(1)求拋物線的解析式;

(2)若點是拋物線上的動點,點是拋物線對稱軸上的動點,是否存在這樣的點,使以點,,,為頂點的四邊形是平行四邊形?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,ED切⊙O于點C,AD交⊙O于點F,AC平分∠BAD,連接BF.

(1)求證:ADED;

(2)若CD=4,AF=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,直徑AB與弦CD相交于點P,∠CAB=62°,APD=86°.

(1)求∠B的大。

(2)已知AD=6,求圓心OBD的距離.

查看答案和解析>>

同步練習(xí)冊答案