精英家教網(wǎng)如圖,點P是正方形ABCD的對角線BD上一點,PE⊥BC于點E,PF⊥CD于點F,連接EF給出下列五個結(jié)論:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=
2
EC.其中正確結(jié)論的序號是
 
分析:過P作PG⊥AB于點G,根據(jù)正方形對角線的性質(zhì)及題中的已知條件,證明△AGP≌△FPE后即可證明①AP=EF;④∠PFE=∠BAP;在此基礎上,根據(jù)正方形的對角線平分對角的性質(zhì),在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得⑤DP=
2
EC
解答:證明:過P作PG⊥AB于點G,
∵點P是正方形ABCD的對角線BD上一點,
∴GP=EP,
在△GPB中,∠GBP=45°,
∴∠GPB=45°,
∴GB=GP,精英家教網(wǎng)
同理,得PE=BE,
∵AB=BC=GF,
∴AG=AB-GB,F(xiàn)P=GF-GP=AB-GB,
∴AG=PF,
∴△AGP≌△FPE,
∴AP=EF,故①正確;
延長AP到EF上于一點H,
∴∠PAG=∠PFH,
∵∠APG=∠FPH,
∴∠PHF=∠PGA=90°,即AP⊥EF,故②正確;
③∵點P是正方形ABCD的對角線BD上任意一點,∠ADP=45度,
∴當∠PAD=45度或67.5度或90度時,△APD是等腰三角形,
除此之外,△APD不是等腰三角形,故③錯誤.
∴∠PFE=∠BAP,故④正確;
∵GF∥BC,
∴∠DPF=∠DBC,
又∵∠DPF=∠DBC=45°,
∴∠PDF=∠DPF=45°,
∴PF=DF=EC,
∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,
∴DP=
2
EC
,故⑤正確.
∴其中正確結(jié)論的序號是①②④⑤.
點評:本題考查了正方形的性質(zhì),即在正方形中,對角線平分對角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點E是正方形ABCD邊BA延長線上一點(AE<AD),連接DE.與正方形ABCD的外接圓相交于點F,BF與AD相交于點G.
(1)求證:BG=DE;
(2)若tan∠E=2,BE=6
2
,求BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•包頭)如圖,點E是正方形ABCD內(nèi)的一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3,則∠BE′C=
135
135
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點E是正方形ABCD邊BC的中點,H是BC延長線上的一點,EG⊥AE于點E,交邊CD于G,
(1)求證:△ABE∽△ECG;
(2)延長EG交∠DCH的平分線于F,則AE與EF的數(shù)量關系是
AE=EF
AE=EF
;
(3)若E為線段BC上的任意一點,則它們之間的關系是否還能成立?若成立,請給予證明;若不能成立,則舉一個反例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•青銅峽市模擬)如圖,點E是正方形ABCD內(nèi)一點,△CDE是等邊三角形,連接EB、EA.
求證:△ADE≌△BCE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點M是正方形ABCD的邊CD的中點,正方形ABCD的邊長為4cm,點P按A-B-C-M-D的順序在正方形的邊上以每秒1cm的速度作勻速運動,設點P的運動時間為x(秒),△APM的面積為y(cm2
(1)直接寫出點P運動2秒時,△AMP面積; 
(2)在點P運動4秒后至8秒這段時間內(nèi),y與x的函數(shù)關系式;
(3)在點P整個運動過程中,當x為何值時,y=3?

查看答案和解析>>

同步練習冊答案