如圖,在正方形ABCD中,AB=1,AC是以點(diǎn)B為圓心,AB長為半徑的圓的一條弧,點(diǎn)E是邊AD上的任意一點(diǎn)(點(diǎn)E與A、D不重合),過E作AC所在圓的切線,交邊DC于點(diǎn)F,G為切點(diǎn)
小題1:當(dāng)∠DEF=時(shí),試說明點(diǎn)G為線段EF的中點(diǎn);
小題2:設(shè)AE=,F(xiàn)C=,用含有的代數(shù)式來表示,并寫出的取值范圍
小題3:如果把△DEF沿直線EF對(duì)折后得△,如圖2,當(dāng) 時(shí),討論△與△是否相似,如果相似,請(qǐng)加以證明;如果不相似,只要寫出結(jié)論,不要求寫出理由.

小題1:∵∠DEF=45°,
∴∠DFE=90°-∠DEF=45°.
∴∠DFE=∠DEF.
∴DE=DF.
又∵AD=DC,
∴AE=FC.
∵AB是圓B的半徑,AD⊥AB,
∴AD切圓B于點(diǎn)A.
同理:CD切圓B于點(diǎn)C.
又∵EF切圓B于點(diǎn)G,
∴AE=EG,F(xiàn)C=FG.
∴EG=FG,即G為線段EF的中點(diǎn).
小題2:根據(jù)(1)中的線段之間的關(guān)系,得EF=x+y,DE=1-x,DF=1-y,
根據(jù)勾股定理,得:
(x+y)2=(1-x)2+(1-y)2
∴y= (0<x<1).
小題3:當(dāng)EF= 時(shí),由(2)得EF=EG+FG=AE+FC,
即x+ = ,
解得x1= 或x2= .
①當(dāng)AE= 時(shí),△AD1D∽△ED1F,
證明:設(shè)直線EF交線段DD1于點(diǎn)H,由題意,得:
△EDF≌△ED1F,EF⊥DD1且DH=D1H.
∵AE= ,AD=1,
∴AE=ED.
∴EH∥AD1,∠AD1D=∠EHD=90°.
又∵∠ED1F=∠EDF=90°,
∴∠ED1F=∠AD1D.
∴△ED1F∽△AD1D.
②當(dāng)AE= 時(shí),△ED1F與△AD1D不相似.
此題綜合運(yùn)用了切線長定理、相似三角形的判定和性質(zhì);能夠發(fā)現(xiàn)正方形,根據(jù)正方形的性質(zhì)進(jìn)行分析證明
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如上圖,小章利用一張左、右兩邊已經(jīng)破損的長方形紙片ABCD做折紙游戲,他將紙片沿EF折疊后,D、C兩點(diǎn)分別落在D ′、C ′ 的位置,并利用量角器量得∠EFB=65°,則∠AED ′等于  ▲  °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:將△ABC紙片沿DE折疊成圖①,此時(shí)點(diǎn)A落在四邊形BCDE內(nèi)部,則∠A與∠1、∠2之間有一種數(shù)量關(guān)系保持不變,
小題1:請(qǐng)找出這種數(shù)量關(guān)系并說明理由.
小題2:若折成圖②或圖③,即點(diǎn)A落在BE或CD上時(shí),分別寫出∠A與∠2;∠A與∠1之間的關(guān)系;(不必證明)
小題3:若折成圖④,寫出∠A與∠1、∠2之間的關(guān)系式;(不必證明);若折成圖⑤,寫出∠A與∠1、∠2之間的關(guān)系式.(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AD⊥AB,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°,那么BC⊥AB,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD中,DCABBC=1,ABACAD=2,則BD的長為( ▲ )
A.B.C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖a是長方形紙帶,∠DEF=24°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的∠CFE的度數(shù)是        .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方形ABCD在直線MN的上方,BC在直線MN上,EBC上一點(diǎn),以AE為邊在直線MN的上方作正方形AEFG

(1)連接GD,求證:△ADG≌△ABE;
(2)連接FC,觀察并猜測(cè)∠FCN的度數(shù)是否總保持不變,
若∠FCN的大小保持不變,請(qǐng)說明理由;
若∠FCN的大小發(fā)生改變,請(qǐng)舉例說明;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知直角坐標(biāo)系中菱形ABCD的位置如圖,C,D兩點(diǎn)的坐標(biāo)分別為(4,0),(0,3).現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從A,C同時(shí)出發(fā),點(diǎn)P沿線段AD向終點(diǎn)D運(yùn)動(dòng),點(diǎn)Q沿折線CBA向終點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

小題1:填空:菱形ABCD的邊長是 ▲  、面積是 ▲  、
高BE的長是  ;
小題2:探究下列問題:
①若點(diǎn)P的速度為每秒1個(gè)單位,點(diǎn)Q的速度為每秒2個(gè)單位.當(dāng)點(diǎn)Q在線段BA上求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,以及S的最大值;
②若點(diǎn)P的速度為每秒1個(gè)單位,點(diǎn)Q的速度變?yōu)槊棵雓個(gè)單位,在運(yùn)動(dòng)過程中,任何時(shí)刻都有相應(yīng)的k值,使得APQ沿它的一邊翻折,翻折前后兩個(gè)三角形組成的四邊形為菱形.請(qǐng)?zhí)骄慨?dāng)t=4秒時(shí)的情形,并求出k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(8分)如圖,E是矩形ABCD中CD邊上一點(diǎn),△BCE沿BE折疊為△BFE,點(diǎn)F落在AD上.
(1)求證:△ABF∽△DFE;
(2)若sin ∠DFE=,求tan ∠EBC的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案