如圖,四邊形ABCD中,DCABBC=1,ABACAD=2,則BD的長為( ▲ )
A.B.C.3D.2
B
作AM⊥BC于點M,AN⊥BD于點N,

∵AC=AB,∴△ABC為等腰三角形,∴AM也是△ABC的中線(三線合一),
∴△ABM≌△ACM,∴∠CAM=∠BAM,
∵AB∥CD,AC=AD,∴∠ADC=∠ACD=∠CAB,
∵∠ADB=∠ABD=∠CDB,∴∠ADB=∠ADC=∠MAB,∴∠MAB=∠DBA,
又∵AB=AB,∴△ABN≌△BAM(AAS),∴AN=BC=,
∵AB=2,∴ =,∴ =15.∴BD=,故選B.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在Rt△ABC中,∠BAC=90°,∠B=30°,線段AD是BC邊上的中線.
小題1:如圖(Ⅰ),將△ADC沿直線BC平移,使點D與點C重合,得到△FCE,連結(jié)AF.求證:四邊形ADEF是等腰梯形;

小題2:如圖(Ⅱ),在(1)的條件下,再將△FCE繞點C順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為(0°<<90°)連結(jié)AF、DE.

AC⊥CF時,求旋轉(zhuǎn)角的度數(shù);②當=60°時,請判斷四邊形ADEF的形狀,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

把三張大小相同的正方形卡片A、B、C疊放在一個底面為正方形的盒底上,底面未被卡片覆蓋的部分用陰影表示,若按圖1擺放時,陰影部分的面積為S1;若按圖2擺放時,陰影部分的面積為S2,則S1與S2的大小關(guān)系是
A. S1 >S2             B. S1 < S2           C. S1 = S2           D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖:把一張給定大小的矩形卡片ABCD放在間距為10mm的橫格紙中(所有橫線互相平行),恰好四個頂點都在橫格線上,AD與l2交于點E, BD與l4交于點F.

小題1:求證:△ABE≌△CDF;
小題2:已知α=25°,求矩形卡片的周長.(可用計算器求值,答案精確到1mm,參考數(shù)據(jù): sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在正方形中,對角線相交于點,平分,交于點
小題1:求證:;
小題2:點從點出發(fā),沿著線段向點運動(不與點重合),同時點從點出發(fā),沿著的延長線運動,點的運動速度相同,當動點停止運動時,另一動點也隨之停止運動.如圖2,平分,交于點,過點,垂足為,請猜想,三者之間的數(shù)量關(guān)系,并證明你的猜想;
小題3:在(2)的條件下,當,時,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在正方形ABCD中,AB=1,AC是以點B為圓心,AB長為半徑的圓的一條弧,點E是邊AD上的任意一點(點E與A、D不重合),過E作AC所在圓的切線,交邊DC于點F,G為切點
小題1:當∠DEF=時,試說明點G為線段EF的中點;
小題2:設(shè)AE=,F(xiàn)C=,用含有的代數(shù)式來表示,并寫出的取值范圍
小題3:如果把△DEF沿直線EF對折后得△,如圖2,當 時,討論△與△是否相似,如果相似,請加以證明;如果不相似,只要寫出結(jié)論,不要求寫出理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖:在梯形ABCD中,AD//BC,AD=2,AC=4,BC=6,BD=8,求梯形ABCD的面積。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在四邊形中,對角線互相平分,交點為.在不添加任何輔助線的前提下,要使四邊形成為矩形,還需添加一個條件,這個條件可以是            

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列各組圖形中一定相似的圖形是(   )                                    
A.有一個角相等的兩個等腰三角形B.兩鄰邊之比相等的兩個平行四邊形
C.有一個角為60º的兩個菱形D.兩個矩形

查看答案和解析>>

同步練習冊答案