矩形、菱形、正方形都是平行四邊形,但它們都是有特殊條件的平行四邊形,正方形不僅是特殊的矩形,也是特殊的菱形.因此,我們可利用矩形、菱形的性質(zhì)來研究正方形的有關(guān)問題.回答下列問題:
(1)將平行四邊形、矩形、菱形、正方形填入它們的包含關(guān)系的下圖中.
(2)要證明一個四邊形是正方形,可先證明四邊形是矩形,再證明這個矩形的_______相等;或者先證明四邊形是菱形,在證明這個菱形有一個角是________ .
(3)某同學根據(jù)菱形面積計算公式推導出對角線長為a的正方形面積是S=0.5a2,對此結(jié)論,你認為是否正確?若正確,請說明理由;若不正確,請舉出一個反例說明.
科目:初中數(shù)學 來源: 題型:
如圖,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE = EF =DE =5 , FB =,動點P從點A出發(fā),沿折線AD-DC-CB以每秒1個單位長的速度運動到點B停止.設運動時間為t秒,y = S△EPF,則y與t的函數(shù)關(guān)系式為 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知ABCD,對角線AC與BD相交于點O,點P在邊AD上,過點P分別作PE⊥AC、PF⊥BD,垂足分別為E、F。
(1)若PF=PE,PE=,EO=1,求∠EPF的度數(shù);
(2)若點P是AD的中點,點F是DO的中點,PE=PF,BF =BC+-4,求BC的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在半徑為2的扇形OAB中,∠AOB=90°,點C是弧AB上的—個動點(不與A,B重合),OD⊥BC,OE⊥AC,垂足分別為D,E,則DE的長度( )
A.1 B.2 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知AB為⊙O的直徑,CD是弦,AB⊥CD于E,OF⊥AD于F,△OBD是等邊三角形。
(1)求證:OF∥BD;
(2)求證:△AFO≌△DEB;
(3)若BE=4cm,求陰影部分的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C的坐標為(m,0)(m>0),點D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設點B的對應點為點E,當△ADE是等腰直角三角形時,m= ,點E的坐標為 ;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
某數(shù)學興趣小組對線段上的動點問題進行探究,已知AB=8.
問題思考:
如圖1,點P為線段AB上的一個動點,分別以AP、BP為邊在同側(cè)作正方形APDC與正方形PBFE.
(1)在點P運動時,這兩個正方形面積之和是定值嗎?如果時求出;若不是,求出這兩個正方形面積之和的最小值.
(2)分別連接AD、DF、AF,AF交DP于點A,當點P運動時,在△APK、△ADK、△DFK中,是否存在兩個面積始終相等的三角形?請說明理由.
問題拓展:
(3)如圖2,以AB為邊作正方形ABCD,動點P、Q在正方形ABCD的邊上運動,且PQ=8.若點P從點A出發(fā),沿A→B→C→D的線路,向D點運動,求點P從A到D的運動過程中,PQ的中點O所經(jīng)過的路徑的長。
(4)如圖(3),在“問題思考”中,若點M、N是線段AB上的兩點,且AM=BM=1,點G、H分別是邊CD、EF的中點.請直接寫出點P從M到N的運動過程中,GH的中點O所經(jīng)過的路徑的長及OM+OB的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com