【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠BDC=∠BAC.其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】C
【解析】①∵AD平分△ABC的外角∠EAC,
∴∠EAD=∠DAC,
∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,
故①正確。
②由(1)可知AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABC=2∠ADB,
∵∠ABC=∠ACB,
∴∠ACB=2∠ADB,
故②正確。
③在△ADC中,∠ADC+∠CAD+∠ACD=180°,
∵CD平分△ABC的外角∠ACF,
∴∠ACD=∠DCF,
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,
∴∠ADC+∠ABD=90°
∴∠ADC=90°∠ABD,
故③正確;
④∵∠BAC+∠ABC=∠ACF,
∴∠BAC+∠ABC=∠ACF,
∵∠BDC+∠DBC=∠ACF,
∴∠BAC+∠ABC=∠BDC+∠DBC,
∵∠DBC=∠ABC,
∴∠BAC=∠BDC,即∠BDC=∠BAC.
故④錯(cuò)誤。
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分別是∠AOC,∠BOD的平分線,∠MON等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)F是等邊△ABC的邊BC延長(zhǎng)線上一點(diǎn),以CF為邊,作菱形CDEF,使菱形CDEF與等邊△ABC在BC的同側(cè),且CD∥AB,連結(jié)BE.
(1)如圖①,若AB=10,EF=8,請(qǐng)計(jì)算△BEF的面積;
(2)如圖②,若點(diǎn)G是BE的中點(diǎn),連接AG、DG、AD.試探究AG與DG的位置和數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A. 3x+6y=9xyB. ﹣a2﹣a2=0
C. 2(3x+2)=6x+2D. ﹣(3x﹣2y)=﹣3x+2y
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)P(m,﹣2)與點(diǎn)Q(3,n)關(guān)于原點(diǎn)對(duì)稱(chēng),則(m+n)2018=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價(jià)與銷(xiāo)量的相關(guān)信息如下表:
時(shí)間x(天) | 1≤x<50 | 50≤x≤90 |
售價(jià)(元/件) | x+40 | 90 |
每天銷(xiāo)量(件) | 200-2x |
已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷(xiāo)售該商品每天的利潤(rùn)為y元。
(1)求出y與x的函數(shù)關(guān)系式;
(2)問(wèn)銷(xiāo)售該商品第幾天時(shí),當(dāng)天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)該商品在銷(xiāo)售過(guò)程中,共有多少天每天的銷(xiāo)售利潤(rùn)不低于4800元?請(qǐng)直接寫(xiě)出結(jié)果。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知AD∥BC,且DC⊥AD于D.
(1)DC與BC有怎樣的位置關(guān)系?說(shuō)說(shuō)你的理由;
(2)你能說(shuō)明∠1+∠2=180°嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com