【題目】如圖,∠ABC=ACB,ADBD、CD分別平分ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①ADBC;②∠ACB=2ADB;③∠ADC+ABD=90°;④∠BDC=BAC.其中正確的結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】C

【解析】①∵AD平分ABC的外角∠EAC,

∴∠EAD=DAC

∵∠EAC=ACB+ABC,且∠ABC=ACB,

∴∠EAD=ABC,

ADBC,

故①正確。

②由(1)可知ADBC,

∴∠ADB=DBC,

BD平分∠ABC

∴∠ABD=DBC,

∴∠ABC=2ADB

∵∠ABC=ACB,

∴∠ACB=2ADB,

故②正確。

③在ADC,ADC+CAD+ACD=180°

CD平分ABC的外角∠ACF,

∴∠ACD=DCF,

ADBC,

∴∠ADC=DCFADB=DBC,CAD=ACB

∴∠ACD=ADC,CAD=ACB=ABC=2ABD

∴∠ADC+CAD+ACD=ADC+2ABD+ADC=2ADC+2ABD=180°,

∴∠ADC+ABD=90°

∴∠ADC=90°ABD,

故③正確;

④∵∠BAC+ABC=ACF,

BAC+ABC=ACF,

∵∠BDC+DBC=ACF

BAC+ABC=BDC+DBC,

∵∠DBC=ABC

BAC=BDC,即∠BDC=BAC.

故④錯(cuò)誤。

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,∠AOB是平角,∠AOC=30°,BOD=60°,OMON分別是∠AOC,BOD的平分線,∠MON等于________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程ax2+3x+20a0)的有個(gè)根是1,則a_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F是等邊△ABC的邊BC延長(zhǎng)線上一點(diǎn),以CF為邊,作菱形CDEF,使菱形CDEF與等邊△ABC在BC的同側(cè),且CD∥AB,連結(jié)BE.

(1)如圖①,若AB=10,EF=8,請(qǐng)計(jì)算△BEF的面積;
(2)如圖②,若點(diǎn)G是BE的中點(diǎn),連接AG、DG、AD.試探究AG與DG的位置和數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是(

A. 3x+6y9xyB. a2a20

C. 23x+2)=6x+2D. ﹣(3x2y)=﹣3x+2y

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)P(m,﹣2)與點(diǎn)Q(3,n)關(guān)于原點(diǎn)對(duì)稱(chēng),則(m+n)2018=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價(jià)與銷(xiāo)量的相關(guān)信息如下表:

時(shí)間x(天)

1≤x<50

50≤x≤90

售價(jià)(元/件)

x+40

90

每天銷(xiāo)量(件)

200-2x

已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷(xiāo)售該商品每天的利潤(rùn)為y元。

(1)求出y與x的函數(shù)關(guān)系式;

(2)問(wèn)銷(xiāo)售該商品第幾天時(shí),當(dāng)天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?

(3)該商品在銷(xiāo)售過(guò)程中,共有多少天每天的銷(xiāo)售利潤(rùn)不低于4800元?請(qǐng)直接寫(xiě)出結(jié)果。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知AD∥BC,且DC⊥AD于D.

(1)DC與BC有怎樣的位置關(guān)系?說(shuō)說(shuō)你的理由;

(2)你能說(shuō)明∠1+∠2=180°嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若多邊形的每一個(gè)內(nèi)角均為135°,則這個(gè)多邊形的邊數(shù)為

查看答案和解析>>

同步練習(xí)冊(cè)答案