【題目】若多邊形的每一個內(nèi)角均為135°,則這個多邊形的邊數(shù)為 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠BDC=∠BAC.其中正確的結(jié)論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于點P(x,y)和Q(x,y′),給出如下定義:
若,則稱點Q為點P的“可控變點”.
例如:點(1,2)的“可控變點”為點(1,2),點(﹣1,3)的“可控變點”為點(﹣1,﹣3).
(1)點(﹣5,﹣2)的“可控變點”坐標(biāo)為 ;
(2)若點P在函數(shù)的圖象上,其“可控變點”Q的縱坐標(biāo)y′是7,求“可控變點”Q的橫坐標(biāo);
(3)若點P在函數(shù)()的圖象上,其“可控變點”Q的縱坐標(biāo)y′ 的取值范圍是,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓的直徑,O為圓心,C為圓弧上一點,AD垂直于過點C的切線,垂足為點D,AB的延長線交切線CD于點E.
(1)求證:AC平分∠DAB;
(2)若AB =4,B為OE的中點,CF⊥AB,垂足為點F,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進價格為3元/個的某品牌粽子,根據(jù)市場預(yù)測,該品牌粽子每個售價4元時,每天能出售500個,并且售價每上漲0.1元,其銷售量將減少10個,為了維護消費者利益,物價部門規(guī)定,該品牌粽子售價不能超過進價的200%,請你利用所學(xué)知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為800元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠CAB的平分線交⊙O于點D,過點D作AC的垂線交AC的延長線于點E,連接BC交AD于點F.
(1)猜想ED與⊙O的位置關(guān)系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達式;
(2)在x軸的負半軸上存在一點P,使得S△AOP=S△AOB,求點P的坐標(biāo);
(3)若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點E的坐標(biāo),并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,tan∠ABC=,∠ACB=45°,AD=8,AD是邊BC上的高,垂足為D,BE=4,點M從點B出發(fā)沿BC方向 以每秒3個單位的速度運動,點N從點E出發(fā),與點M同時同方向以每秒1個單位的速度運動.以MN為邊在BC的上方作正方形MNGH.點M到達點C時停止運動,點N也隨之停止運動.設(shè)運動時間為t(秒)(t>0) .
(1)當(dāng)t為 時,點H剛好落在線段AB上;當(dāng)t為 時,點H剛好落在線段AC上;
(2)設(shè)正方形MNGH與Rt△ABC重疊部分的圖形的面積為S,求出S 關(guān)于t的函數(shù)關(guān)系式并寫出自變量t的取值范圍;
(3)設(shè)正方形MNGH的邊NG所在直線與線段AC交于點P,連結(jié)PM,直接寫出當(dāng)t為何值時,△PMN的外接圓與AD相切.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com