【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠CAB的平分線交⊙O于點D,過點D作AC的垂線交AC的延長線于點E,連接BC交AD于點F.
(1)猜想ED與⊙O的位置關系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.
【答案】(1)ED與⊙O的位置關系是相切;(2).
【解析】
試題分析:(1)連接OD,根據(jù)∠CAB的平分線交⊙O于點D,則=,依據(jù)垂徑定理可以得到:OD⊥BC,然后根據(jù)直徑的定義,可以得到OD∥AE,從而證得:DE⊥OD,則DE是圓的切線;
(2)首先證明△FBD∽△BAD,依據(jù)相似三角形的對應邊的比相等,即可求DF的長,繼而求得答案.
解:(1)ED與⊙O的位置關系是相切.理由如下:
連接OD,
∵∠CAB的平分線交⊙O于點D,
∴=,
∴OD⊥BC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
即BC⊥AC,
∵DE⊥AC,
∴DE∥BC,
∴OD⊥DE,
∴ED與⊙O的位置關系是相切;
(2)連接BD.
∵AB是直徑,
∴∠ADB=90°,
在直角△ABD中,BD===,
∵AB為直徑,
∴∠ACB=∠ADB=90°,
又∵∠AFC=∠BFD,
∴∠FBD=∠CAD=∠BAD
∴△FBD∽△BAD,
∴=
∴FD=
∴AF=AD﹣FD=5﹣=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是△ABC內一點,連結OB、OC,并將AB、OB、OC、AC的中點D、E、F、G依次連結,得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若M為EF的中點,OM=3,∠OBC和∠OCB互余,求DG的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明從家去體育場鍛煉,同時,媽媽從體育場以50米/分的速度回家,小明到體育場后發(fā)現(xiàn)要下雨,立即返回,追上媽媽后,小明以250米/分的速度回家取傘,立即又以250米/分的速度折回接媽媽,并一同回家.如圖是兩人離家的距離y(米)與小明出發(fā)的時間x(分)之間的函數(shù)圖像.
(注:小明和媽媽始終在同一條筆直的公路上行走,圖像上A、C、D三點在一條直線上)
(1)求線段BC的函數(shù)表達式;
(2)求點D坐標;
(3)當 x的值為 時,小明與媽媽相距1 500米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com