【題目】如圖,在正方形中,點、為邊和上的動點(不含端點),.下列三個結(jié)論:①當(dāng)時,則;②;③的周長不變,其中正確結(jié)論的個數(shù)是( )
A.0B.1
C.2D.3
【答案】D
【解析】
根據(jù)題目條件判定△AND≌△AMB,從而判斷①的正誤;利用截長補短的方法判定三角形全等,從而判斷②③正誤.
解:在正方形ABCD中,AD=AB=CD=CB,∠D=∠B=∠C=90°
∵
∴
∴∠NMC=45°,△MNC是等腰直角三角形
∴NC=MC
∴DN=BM
所以△AND≌△AMB
∴ ,因此①正確;
如圖:延長CD,使得DE=BM
在△ADE和△ABM中
∴△ADE≌△ABM
∴,AM=AE
∵
∴
∴
∴
又∵AE=AM,AN=AN
∴△AEN≌△AMN
∴MN=EN=ED+DN=BM+DN
∠AMN=∠E,∠ANM=∠ANE
∴∠ENM=∠ANM+∠ANE=2(180°-45°-∠AMN)=270°-2∠AMN
而∠MNC=180°-∠ENM=180°-(270°-2∠AMN)=2∠AMN-90°
即②,正確;
的周長=MN+MC+NC=EN+NC+MC=ED+DN+NC+MC=BM+DN+NC+MC=CD+BC,即正方形邊長的2倍,∴③的周長不變,正確
正確的共三個,故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BCD=90°,且BC=DC,直線PQ經(jīng)過點D.設(shè)∠PDC=α(45°<α<135°),BA⊥PQ于點A,將射線CA繞點C按逆時針方向旋轉(zhuǎn)90°,與直線PQ交于點E.
(1)當(dāng)α=125°時,∠ABC= °;
(2)求證:AC=CE;
(3)若△ABC的外心在其內(nèi)部,直接寫出α的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的解析式y=ax2+bx+3與x軸交于A、B兩點,點B的坐標(biāo)為(﹣1,0)拋物線與y軸正半軸交于點C,△ABC面積為6.
(1)如圖1,求此拋物線的解析式;
(2)P為第一象限拋物線上一動點,過P作PG⊥AC,垂足為點G,設(shè)點P的橫坐標(biāo)為t,線段PG的長為d,求d與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)如圖2,在(2)的條件下,過點B作CP的平行線交y軸上一點F,連接AF,在BF的延長線上取點E,連接PE,若PE=AF,∠AFE+∠BEP=180°,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(教材呈現(xiàn))下圖是華師版九年級上冊數(shù)學(xué)教材第77頁的部分內(nèi)容.請根據(jù)教材提示,結(jié)合圖23.4.2,寫出完整的證明過程.
(2)(結(jié)論應(yīng)用)如圖,△ABC是等邊三角形,點D在邊AB上(點D與點A、B不重合),過點D作DE∥BC交AC于點E,連結(jié)BE,M、N、P分別為DE、BE、BC的中點,順次連結(jié)M、N、P.
①求證:MN=PN;
②∠MNP的大小是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點G為弧BC上一動點,CG與AB的延長線交于點F,連接OD.
(1)判定∠AOD與∠CGD的大小關(guān)系為 ,并求證:GB平分∠DGF.
(2)在G點運動過程中,當(dāng)GD=GF時,DE=4,BF=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果超市經(jīng)銷一種進價為18元/kg的水果,根據(jù)以前的銷售經(jīng)驗,該種水果的最佳銷售期為20天,銷售人員整理出這種水果的銷售單價y(元/kg)與第x天(1≤x≤20)的函數(shù)圖象如圖所示,而第x天(1≤x≤20)的銷售量m(kg)是x的一次函數(shù),滿足下表:
x(天) | 1 | 2 | 3 | … |
m(kg) | 20 | 24 | 28 | … |
(1)請分別寫出銷售單價y(元/kg)與x(天)之間及銷售量m(kg)是x(天)的之間的函數(shù)關(guān)系式
(2)求在銷售的第幾天時,當(dāng)天的利潤最大,最大利潤是多少?
(3)請求出試銷的20天中當(dāng)天的銷售利潤不低于1680元的天數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標(biāo)為(﹣2,3).
(1)求一次函數(shù)和反比例函數(shù)解析式.
(2)若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.
(3)根據(jù)圖象,直接寫出不等式﹣x+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小強在教學(xué)樓的點P處觀察對面的辦公大樓.為了測量點P到對面辦公大樓上部AD的距離,小強測得辦公大樓頂部點A的仰角為45°,測得辦公大樓底部點B的俯角為60°,已知辦公大樓高46米,CD=10米.求點P到AD的距離(用含根號的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是邊AC、BC的中點,F是BC延長線上一點,∠F=∠B.
(l)若AB=1O,求FD的長;
(2)若AC=BC.求證:△CDE∽△DFE .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com