【題目】小強在教學樓的點P處觀察對面的辦公大樓.為了測量點P到對面辦公大樓上部AD的距離,小強測得辦公大樓頂部點A的仰角為45°,測得辦公大樓底部點B的俯角為60°,已知辦公大樓高46米,CD=10米.求點P到AD的距離(用含根號的式子表示).
【答案】 .
【解析】
連接PA、PB,過點P作PM⊥AD于點M;延長BC,交PM于點N,將實際問題中的已知量轉(zhuǎn)化為直角三角形中的有關(guān)量,設(shè)PM=x米,在Rt△PMA中,表示出AM,在Rt△PNB中,表示出BN,由AM+BN=46米列出方程求解即可.
解:連結(jié)PA、PB,過點P作PM⊥AD于點M;延長BC,交PM于點N
則∠APM=45°,∠BPM=60°,NM=10米
設(shè)PM=x
在Rt△PMA中,AM=PM×tan∠APM=xtan45°=x(米)
在Rt△PNB中,BN=PN×tan∠BPM=(-10)tan60°=(-10)(米^
由AM+BN=46米,得x+(x-10)=46
解得,x==
∴點P到AD的距離為米
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在網(wǎng)格紙中,、都是格點,以為圓心,為半徑作圓,用無刻度的直尺完成以下畫圖:(不寫畫法)
(1)在圓①中畫圓的一個內(nèi)接正六邊形;
(2)在圖②中畫圓的一個內(nèi)接正八邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形中,點、為邊和上的動點(不含端點),.下列三個結(jié)論:①當時,則;②;③的周長不變,其中正確結(jié)論的個數(shù)是( )
A.0B.1
C.2D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的布袋里裝有4個標有1,2,3,4的小球,它們的形狀、大小完全相同,小明從布袋里隨機取出一個小球,記下數(shù)字為,小紅在剩下的3個小球中隨機取出一個小球,記下數(shù)字為。
(1)計算由、確定的點在函數(shù)的圖象上的概率;
(2)小明和小紅約定做一個游戲,其規(guī)則為:若、滿足>6則小明勝,若、滿足<6則小紅勝,這個游戲公平嗎?說明理由.若不公平,請寫出公平的游戲規(guī)則.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】生產(chǎn)某種農(nóng)產(chǎn)品的成本每千克20元,調(diào)查發(fā)現(xiàn),該產(chǎn)品每天銷售量y(千克)與銷售單價x(元/千克)滿足如下關(guān)系:,設(shè)這種農(nóng)產(chǎn)品的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)物價部門規(guī)定這種產(chǎn)品的銷售價不得高于每千克28元,該農(nóng)戶想在這種產(chǎn)品經(jīng)銷季節(jié)每天獲得150元的利潤,銷售價應(yīng)定為每千克多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“永定樓”,作為門頭溝區(qū)的地標性建筑,因其坐落在永定河畔而得名.為測得其高度,低空無人機在A處,測得樓頂端B的仰角為30°,樓底端C的俯角為45°,此時低空無人機到地面的垂直距離AE為23 米,那么永定樓的高度BC是______米(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小華同學設(shè)計的“作三角形的高線”的尺規(guī)作圖的過程.
已知:如圖1,△ABC.
求作:AB邊上的高線.
作法:如圖2,
①分別以A,C為圓心,大于長
為半徑作弧,兩弧分別交于點D,E;
② 作直線DE,交AC于點F;
③ 以點F為圓心,FA長為半徑作圓,交AB的延長線于點M;
④ 連接CM.
則CM 為所求AB邊上的高線.
根據(jù)上述作圖過程,回答問題:
(1)用直尺和圓規(guī),補全圖2中的圖形;
(2)完成下面的證明:
證明:連接DA,DC,EA,EC,
∵由作圖可知DA=DC =EA=EC,
∴DE是線段AC的垂直平分線.
∴FA=FC .
∴AC是⊙F的直徑.
∴∠AMC=______°(___________________________________)(填依據(jù)),
∴CM⊥AB.
即CM就是AB邊上的高線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC三個頂點的坐標分別為A(﹣5,1),B(﹣1,5),C(﹣2,2),將△ABC繞原點順時針旋轉(zhuǎn)90°得△A1B1C1,△A1B1C1與△A2B2C2關(guān)于x軸對稱.
(1)畫出△A1B1C1和△A2B2C2;
(2)sin∠CAB= ;
(3)△ABC與△A2B2C2組成的圖形是否是軸對稱圖形?若是軸對稱圖形,請直接寫出對稱軸所在的直線解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 已知于x的元二次方程x2﹣6x+2a+5=0有兩個不相等的實數(shù)根x1,x2.
(1)求a的取值范圍;
(2)若x12+x22﹣x1x2≤30,且a為整數(shù),求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com