【題目】在甲、乙兩個不透明的布袋里,都裝有3個大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標有數(shù)字0,1,2;乙袋中的小球上分別標有數(shù)字﹣1,﹣2,0.現(xiàn)從甲袋中任意摸出一個小球,記其標有的數(shù)字為x,再從乙袋中任意摸出一個小球,記其標有的數(shù)字為y,以此確定點M的坐標(x,y).

(1)請你用畫樹狀圖或列表的方法,寫出點M所有可能的坐標;

(2)求點M(x,y)在函數(shù)y=﹣的圖象上的概率.

【答案】(1)樹狀圖見解析,則點M所有可能的坐標為:(0,1),(0,2),(0,0),(1,1),(1,2),(1,0),(2,1),(2,2),(2,0);(2).

【解析】

試題分析:(1)畫出樹狀圖,可求得所有等可能的結(jié)果;(2)由點M(x,y)在函數(shù)y=的圖象上的有:(1,2),(2,1),直接利用概率公式求解即可求得答案.

試題解析:(1)樹狀圖如下圖:

則點M所有可能的坐標為:(0,1),(0,2),(0,0),(1,1),(1,2),(1,0),(2,1),(2,2),(2,0);(2)點M(x,y)在函數(shù)y=的圖象上的有:(1,2),(2,1),

點M(x,y)在函數(shù)y=的圖象上的概率為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是線段AB上的一點,點MN分別是線段AP、PB的中點.

1)如圖1,若點P是線段AB的中點,且MP=4cm,求線段AB的長;

2)如圖2,若點P是線段AB上的任一點,且AB=12cm,求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】永輝超市銷售茶壺、茶杯,茶壺每只定價20元,茶杯每只4元.今年雙十一期間超市將開展促銷活動,向顧客提供兩種優(yōu)惠方案:

方案一:每買一只茶壺就贈一只茶杯;

方案二:茶壺和茶杯都按定價的90%付款.

某顧客計劃到該超市購買茶壺5只和茶杯只(茶杯數(shù)多于5只).

1)用含的代數(shù)式分別表示方案一與方案二各需付款多少元?

2)當時,請通過計算說明該顧客選擇上面的兩種購買方案哪種更省錢?

3)當時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,②分別是某吊車在吊一物品時的實物圖與示意圖,已知吊車底盤CD的高度為2米,支架BC的長為4米,且與地面成30°角. 吊繩AB與支架BC的夾角為80°,吊臂AC與地面成70°角,求吊車的吊臂頂端A距地面的高度是多少米?(精確到0.1米. 參考數(shù)據(jù):sin10°=cos80°≈0.17,cos10°=sin80°≈0.98,sin20°=cos70°≈0.34,tan70°≈2.75,sin70°≈0.94)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工程交由甲、乙兩個工程隊來完成,已知甲工程隊單獨完成需要60天,乙工程隊單獨完成需要40

(1)若甲工程隊先做30天后,剩余由乙工程隊來完成,還需要用時   

(2)若甲工程隊先做20天,乙工程隊再參加,兩個工程隊一起來完成剩余的工程,求共需多少天完成該工程任務?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游。

[來

根據(jù)以上信息,解答下列問題:

(1)設(shè)租車時間為小時,租用甲公司的車所需費用為元,租用乙公司的車所需費用為元,分別求出關(guān)于的函數(shù)表達式;

(2)請你幫助小明計算并選擇哪個出游方案合算。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣2x+8的圖象與反比例函數(shù)y2=(x>0)的圖象交于A(3,n),B(m,6)兩點.

(1)求反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)根據(jù)圖象直接寫出當x>0時,y1>y2的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,ABC,AC=BC,∠A=30°,DAB邊上且ADC=45°.

(1)BCD的度數(shù);

(2)將圖中的BCD繞點B順時針旋轉(zhuǎn),得到BCD.當點D恰好落在BC邊上時如圖所示,連接CC并延長交AB于點E

CCB的度數(shù);

求證CBD′≌CAE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,將一個邊長為2的正方形ABCD和一個長為2,寬為1的長方形CEFD拼在一起,構(gòu)成一個大的長方形ABEF,現(xiàn)將小長方形CEFD繞點C順時針旋轉(zhuǎn)至CE′F′D′,旋轉(zhuǎn)角為α

1)當邊CD′恰好經(jīng)過EF的中點H時,求旋轉(zhuǎn)角α的大;

2)如圖2GBC中點,且α90°,求證:GD′=E′D;

3)小長方形CEFD繞點C順時針旋轉(zhuǎn)一周的過程中,△DCD′△BCD′能否全等?若能,直接寫出旋轉(zhuǎn)角α的大。蝗舨荒,說明理由.

查看答案和解析>>

同步練習冊答案