【題目】數(shù)學課上,李老師出示了如下框中的題目.
小敏與同桌小聰討論后,進行了如下解答:
(1)特殊情況探索結論
當點E為AB的中點時,如圖1,確定線段AE與的DB大小關系.請你直接寫出結論:AEDB(填“>”,“<”或“=”).
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關系是:AEDB(填“>”,“<”或“=”).理由如下:
如圖2,過點E作EF∥BC,交AC于點F,(請你完成以下解答過程)
(3)拓展結論,設計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(請你直接寫出結果).
【答案】
(1)=
(2)=
(3)
解:分為四種情況:
如圖1:
∵AB=AC=1,AE=2,
∴B是AE的中點,
∵△ABC是等邊三角形,
∴AB=AC=BC=1,△ACE是直角三角形(根據(jù)直角三角形斜邊的中線等于斜邊的一半),
∴∠ACE=90°,∠AEC=30°,
∴∠D=∠ECB=∠BEC=30°,∠DBE=∠ABC=60°,
∴∠DEB=180°﹣30°﹣60°=90°,
即△DEB是直角三角形.
∴BD=2BE=2(30°所對的直角邊等于斜邊的一半),
即CD=1+2=3.
如圖2,
過A作AN⊥BC于N,過E作EM⊥CD于M,
∵等邊三角形ABC,EC=ED,
∴BN=CN= BC= ,CM=MD= CD,AN∥EM,
∴△BAN∽△BEM,
∴ ,
∵△ABC邊長是1,AE=2,
∴ = ,
∴MN=1,
∴CM=MN﹣CN=1﹣ = ,
∴CD=2CM=1;
如圖3,
∵∠ECD>∠EBC(∠EBC=120°),而∠ECD不能大于120°,否則△EDC不符合三角形內角和定理,
∴此時不存在EC=ED;
如圖4
∵∠EDC<∠ABC,∠ECB>∠ACB,
又∵∠ABC=∠ACB=60°,
∴∠ECD>∠EDC,
即此時ED≠EC,
∴此時情況不存在,
答:CD的長是3或1.
【解析】解:(1.)答案為:=.
(2.)答案為:=.
證明:在等邊△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,
∵EF∥BC,
∴∠AEF=∠ABC,∠AFE=∠ACB,
∴∠AEF=∠AFE=∠BAC=60°,
∴AE=AF=EF,
∴AB﹣AE=AC﹣AF,
即BE=CF,
∵∠ABC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,
∵ED=EC,
∴∠EDB=∠ECB,
∵∠EBC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,
∴∠BED=∠FCE,
在△DBE和△EFC中
,
∴△DBE≌△EFC(SAS),
∴DB=EF,
∴AE=BD.
(1)根據(jù)等邊三角形的性質和三角形的內角和定理求出∠D=∠ECB=30°,∠ABC=60°,求出∠D=∠DEB=30°,推出DB=BE=AE即可得到答案;(2)作EF∥BC,證出等邊三角形AEF,再證△DBE≌△EFC即可得到答案;(3)分為四種情況:畫出圖形,根據(jù)等邊三角形性質求出符合條件的CD即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某居民小區(qū)的一塊寬為2a米,長為b米的長方形空地,為了美化環(huán)境,準備在這塊長方形空地的四個頂點處修建一個半徑為a米的扇形花臺,然后在花臺內種花,其余種草.
(1)請分別用含a、b的式子表示種花和種草的面積.(答案保留π)
(2)如果建造花臺及種花費用每平方米需要資金100元,種草每平方米需要資金50元,那么美化這塊空地共需資金多少元?(答案保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB交CD于O,OE⊥AB.
(1)若∠EOD=20°,求∠AOC的度數(shù);
(2)若∠AOC:∠BOC=1:2,求∠EOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1) 請畫出△ABC向左平移5個單位長度后得到的△ABC;
(2) 請畫出△ABC關于原點對稱的△ABC;
(3) 在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,∠BAD、∠ADC的平分線AE、DF分別交BC于點E、F,AE與DF相交于點G.
(1)求證:∠AGD=90°.
(2)若CD=4cm,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣ (x﹣1)2+3與y軸交于點A,頂點為B,對稱軸BC與x軸交于點C.
(1)如圖1.求點A的坐標及線段OC的長;
(2)點P在拋物線上,直線PQ∥BC交x軸于點Q,連接BQ.
①若含45°角的直角三角板如圖2所示放置.其中,一個頂點與點C重合,直角頂點D在BQ上,另一個頂點E在PQ上.求直線BQ的函數(shù)解析式;
②若含30°角的直角三角板一個頂點與點C重合,直角頂點D在直線BQ上,另一個頂點E在PQ上,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫氖阶,或可以求出一些不規(guī)則圖形的面積.
(1)如圖1,是將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,試用不同的方法計算這個圖形的面積,你能發(fā)現(xiàn)什么結論,請寫出來.
(2)如圖2,是將兩個邊長分別為a和b的正方形拼在一起,B、C、G三點在同一直線上,連接BD和BF,若兩正方形的邊長滿足a+b=10,ab=20,你能求出陰影部分的面積嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,BD是一條對角線,點P在CD上(與點C,D不重合),連接AP,平移△ADP,使點D移動到點C,得到△BCQ,過點Q作QM⊥BD于M,連接AM,PM(如圖1).
(1)判斷AM與PM的數(shù)量關系與位置關系并加以證明;
(2)若點P在線段CD的延長線上,其它條件不變(如圖2),(1)中的結論是否仍成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為m cm,寬為n cm)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分的周長和是( )cm.
A.4m
B.4n
C.2(m+n)
D.4(m﹣n)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com