【題目】請閱讀下列材料,并完成相應(yīng)的任務(wù).

梅涅勞斯(Menelaus)是公元一世紀(jì)時的希臘數(shù)學(xué)家兼天文學(xué)家,著有幾何學(xué)和三角學(xué)方面的許多書籍.梅涅勞斯發(fā)現(xiàn),三角形各邊(或其延長線)被一條不過任何一個頂點也不與任何一條邊平行的直線所截,這條直線可能與三角形的兩條邊相交(一定還會與一條邊的延長線相交),也可能與三條邊都不相交(與三條邊的延長線都相交).他進(jìn)行了深入研究并證明了著名的梅涅勞斯定理(簡稱梅氏定理):

設(shè)DE,F依次是△ABC的三邊AB,BCCA或其延長線上的點,且這三點共線,則滿足

這個定理的證明步驟如下:

情況:如圖1,直線DE交△ABC的邊AB于點D,交邊AC于點F,交邊BC的延長線與點E

過點CCMDEAB于點M,則,(依據(jù)),

,

BEADFCBDAFEC,即

情況:如圖2,直線DE分別交△ABC的邊BA,BC,CA的延長線于點D,EF

1)情況中的依據(jù)指:   ;

2)請你根據(jù)情況的證明思路完成情況的證明;

3)如圖3,DF分別是△ABC的邊AB,AC上的點,且AD:DBCF:FA2:3,連接DF并延長,交BC的延長線于點E,那么BE:CE   

【答案】1)兩條直線被一組平行線所截,所得的對應(yīng)線段成比例;(2)見解析;(3)

【解析】

1)根據(jù)平行線分線段成比例定理解決問題即可;
2)如圖2中,作CNDEBDN.模仿情況①的方法解決問題即可;
3)利用梅氏定理即可解決問題.

解:(1)情況中的依據(jù)是:兩條直線被一組平行線所截,所得的對應(yīng)線段成比例.

故答案為:兩條直線被一組平行線所截,所得的對應(yīng)線段成比例.

2)如圖2中,作CNDEBDN

則有,,

,

BEADFCBDAFEC

1

3)∵1,AD:DBCF:FA2:3

=1,∴=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,P1OA1,P2A1A2,P3A2A3……都是等腰Rt,直角頂點P1(3,3),P2P3……,均在直線y=﹣x+4上,設(shè)P1OA1P2A1A2,P3A2A3……的面積分別為S1S2,S3……則S2019的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點、在雙曲線上,軸于,軸于點交于點,的中點.

1)試判斷四邊形的形狀,并說明理由.

2)若的面積為,求該雙曲線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與函數(shù)的圖象交于,兩點,且點的坐標(biāo)為

1)求的值;

2)已知點,過點作平行于軸的直線,交直線于點,交函數(shù)的圖象于點

①當(dāng)時,求線段的長;

②若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,分別以正方形的三邊為直徑在正方形內(nèi)部作半圓,則陰影部分的面積之和是( 。

A.8B.4C.16πD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作.已知該水果的進(jìn)價為8/千克,下面是他們在活動結(jié)束后的對話.

小麗:如果以10/千克的價格銷售,那么每天可售出300千克.

小強(qiáng):如果每千克的利潤為3元,那么每天可售出250千克.

小紅:如果以13/千克的價格銷售,那么每天可獲取利潤750元.

【利潤=(銷售價-進(jìn)價)銷售量】

1)請根據(jù)他們的對話填寫下表:

銷售單價x(元/kg

10

11

13

銷售量ykg




2)請你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x0)的函數(shù)關(guān)系式;

3)設(shè)該超市銷售這種水果每天獲取的利潤為W元,求Wx的函數(shù)關(guān)系式.當(dāng)銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點坐標(biāo)A1,3),與x軸的一個交點B40),直線y2=mx+nm≠0)與拋物線交于A,B兩點,下列結(jié)論:

①2a+b=0;②abc0方程ax2+bx+c=3有兩個相等的實數(shù)根;拋物線與x軸的另一個交點是(﹣1,0);當(dāng)1x4時,有y2y1

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線yx+2x軸交于點A,與y軸交于點C,與反比例函數(shù)y在第一象限內(nèi)的圖象交于點B1,3),連接BO,下面三個結(jié)論:①SAOB1.5點(x1,y1)和點(x2y2)在反比例函數(shù)的圖象上,若x1x2,則y1y2;不等式x+2的解集是0x1.其中正確的有( 。

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案