【題目】已知:如圖,∠1=2.求證:∠3 +4=180°

證明:∵∠1=2(已知)

ab    

∴∠3 +5=180° (兩直線平行,同旁內角互補)

∵∠4=5    

∴∠3 +4=180° (等量代換)

【答案】同位角相等,兩直線平行;兩直線平行,同旁內角互補;對頂角相等.

【解析】

先判定ab,即可得出∠3+5=180°,再根據(jù)對頂角相等,即可得到∠4=5,進而得出∠3+4 =180°.

證明:∵∠1=2,

ab (同位角相等,兩直線平行),

∴∠3+5=180° (兩直線平行,同旁內角互補),

又∵∠4=5(對頂角相等),

∴∠3+4=180°.

故答案為:同位角相等,兩直線平行;兩直線平行,同旁內角互補;對頂角相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABC中,∠B=90°,A=60°,AC=2+4,點M、N分別在線段AC、AB上,將ANM沿直線MN折疊,使點A的對應點D恰好落在線段BC上,當DCM為直角三角形時,折痕MN的長為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有四張相同的卡片,分別寫有數(shù)字2,0,1,5,將它們背面朝上(背面無差別)洗勻后放在桌上.

(1)從中任意抽出一張,抽到卡片上的數(shù)字為負數(shù)的概率;

(2)從中任意抽出兩張,用樹狀圖或表格列出所有可能的結果,并求抽出卡片上的數(shù)字積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在等腰ABCADE中,AB=AC,AD=AE,且∠BAC=DAE=120°.

(1)求證:ABD≌△ACE;

(2)把ADE繞點A逆時針方向旋轉到圖②的位置,連接CD,點M、P、N分別為DE、DC、BC的中點,連接MN、PN、PM,判斷PMN的形狀,并說明理由;

(3)在(2)中,把ADE繞點A在平面內自由旋轉,若AD=4,AB=6,請分別求出PMN周長的最小值與最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,已知AB=3,點E,F(xiàn)分別在BC、CD上,且∠BAE=30°,∠DAF=15°,則AEF的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(﹣6,n),與x軸交于點C.

(1)求一次函數(shù)y=kx+b的關系式;

(2)結合圖象,直接寫出滿足kx+b>的x的取值范圍;

(3)若點P在x軸上,且SACP=SBOC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質,易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C均在格點上,在△ABC的內部有一點P,滿足SPAB:SPBC:SPCA=1:2:3,請在如圖所示的網(wǎng)格中,用無刻度直尺畫出點P(保留畫圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

查看答案和解析>>

同步練習冊答案