【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.

【答案】(1)(m,2m﹣5);(2)SABC =﹣;(3)m的值為10+2

【解析】(1)利用配方法將二次函數(shù)解析式由一般式變形為頂點(diǎn)式,此題得解;

(2)過(guò)點(diǎn)C作直線AB的垂線,交線段AB的延長(zhǎng)線于點(diǎn)D,由ABx軸且AB=4,可得出點(diǎn)B的坐標(biāo)為(m+2,4a+2m5),設(shè)BD=t,則點(diǎn)C的坐標(biāo)為(m+2+t,4a+2m5t),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面積公式即可得出SABC的值;

(3)由(2)的結(jié)論結(jié)合SABC=2可求出a值,分三種情況考慮:①當(dāng)m>2m2,即m<2時(shí),x=2m2時(shí)y取最大值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于m的一元二次方程,解之可求出m的值;②當(dāng)2m5≤m≤2m2,即2≤m≤5時(shí),x=m時(shí)y取最大值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于m的一元一次方程,解之可求出m的值;③當(dāng)m<2m5,即m>5時(shí),x=2m5時(shí)y取最大值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于m的一元一次方程,解之可求出m的值.綜上即可得出結(jié)論.

1)y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,

∴拋物線的頂點(diǎn)坐標(biāo)為(m,2m﹣5),

故答案為:(m,2m﹣5);

(2)過(guò)點(diǎn)C作直線AB的垂線,交線段AB的延長(zhǎng)線于點(diǎn)D,如圖所示,

ABx軸,且AB=4,

∴點(diǎn)B的坐標(biāo)為(m+2,4a+2m﹣5),

∵∠ABC=135°,

∴設(shè)BD=t,則CD=t,

∴點(diǎn)C的坐標(biāo)為(m+2+t,4a+2m﹣5﹣t),

∵點(diǎn)C在拋物線y=a(x﹣m)2+2m﹣5上,

4a+2m﹣5﹣t=a(2+t)2+2m﹣5,

整理,得:at2+(4a+1)t=0,

解得:t1=0(舍去),t2=﹣,

SABC=ABCD=﹣

(3)∵△ABC的面積為2,

=2,

解得:a=﹣,

∴拋物線的解析式為y=﹣(x﹣m)2+2m﹣5.

分三種情況考慮:

①當(dāng)m>2m﹣2,即m<2時(shí),有﹣(2m﹣2﹣m)2+2m﹣5=2,

整理,得:m2﹣14m+39=0,

解得:m1=7﹣(舍去),m2=7+(舍去);

②當(dāng)2m﹣5≤m≤2m﹣2,即2≤m≤5時(shí),有2m﹣5=2,解得:m=;

③當(dāng)m<2m﹣5,即m>5時(shí),有﹣(2m﹣5﹣m)2+2m﹣5=2,

整理,得:m2﹣20m+60=0,

解得:m3=10﹣2(舍去),m4=10+2

綜上所述:m的值為10+2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,∠1=2.求證:∠3 +4=180°

證明:∵∠1=2(已知)

ab    

∴∠3 +5=180° (兩直線平行,同旁內(nèi)角互補(bǔ))

∵∠4=5    

∴∠3 +4=180° (等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

材料一:對(duì)于一個(gè)兩位數(shù),交換它的個(gè)位和十位數(shù)字得到的新數(shù)叫這個(gè)兩位數(shù)的“倒序數(shù)”.如:23的倒序數(shù)是32,50的倒序數(shù)是05.

材料二:對(duì)于一個(gè)兩位數(shù),若它的個(gè)位數(shù)字與十位數(shù)字的和小于等于9,則把個(gè)位數(shù)字與十位數(shù)字的和插入到這個(gè)兩位數(shù)中間得到的新數(shù)叫這個(gè)兩位數(shù)的“凸數(shù)”.23的凸數(shù)是253.

1)請(qǐng)求出42的“倒序數(shù)”與“凸數(shù)”;38有“凸數(shù)”嗎?為什么?

2)若一個(gè)兩位數(shù)與它的“倒序數(shù)”的和的4倍比這個(gè)兩位數(shù)的“凸數(shù)”小132,請(qǐng)求出這個(gè)兩位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ADBC,DC⊥BC, AE平分∠BAD, ECD中點(diǎn),試探索ADBCAB之間有何關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BAD=90°,點(diǎn)EBC的延長(zhǎng)線上,且∠DEC=BAC.

(1)求證:DE是⊙O的切線;

(2)若ACDE,當(dāng)AB=8,CE=2時(shí),求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EAB邊的中點(diǎn),沿EC對(duì)折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連結(jié)AP并延長(zhǎng)APCDF點(diǎn),連結(jié)CP并延長(zhǎng)CPADQ點(diǎn).給出以下結(jié)論:

①四邊形AECF為平行四邊形;

②∠PBA=APQ;

③△FPC為等腰三角形;

④△APB≌△EPC.

其中正確結(jié)論的個(gè)數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某市的空氣質(zhì)量情況,從環(huán)境監(jiān)測(cè)網(wǎng)隨機(jī)抽取了若干天的空氣質(zhì)量情況作為樣本進(jìn)行統(tǒng)計(jì),繪制了如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出).請(qǐng)你根據(jù)圖中提供的信息,解答下列問(wèn)題:

1)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

2)求扇形統(tǒng)計(jì)圖中表示“輕度污染”的扇形的圓心角度數(shù);

3)請(qǐng)估計(jì)我市這一年(365天)達(dá)到“優(yōu)”和“良”的總天數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在數(shù)軸上5所對(duì)的兩點(diǎn)之間的距離:;

在數(shù)軸上3所對(duì)的兩點(diǎn)之間的距離:;

在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離:

在數(shù)軸上點(diǎn)、分別表示數(shù)、,則、兩點(diǎn)之間的距離

回答下列問(wèn)題:

1)數(shù)軸上表示的兩點(diǎn)之間的距離是_________

數(shù)軸上表示數(shù)3的兩點(diǎn)之間的距離表示為_________;

數(shù)軸上表示數(shù)_______________的兩點(diǎn)之間的距離表為;

2)七年級(jí)研究性學(xué)習(xí)小組在數(shù)學(xué)老師指導(dǎo)下,對(duì)式子進(jìn)行探究:

①請(qǐng)你借助于數(shù)軸進(jìn)行探究:當(dāng)表示數(shù)的點(diǎn)在3之間移動(dòng)時(shí),的值總是一個(gè)固定的值為:____________

②請(qǐng)你借助于數(shù)軸進(jìn)行探究:如果要使,那么數(shù)軸上表示點(diǎn)的數(shù)__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三角形紙片ABC中,∠A=65°,∠B=75°,將∠C沿DE對(duì)折,使點(diǎn)C落在ΔABC外的點(diǎn)處,若∠1=20°,則∠2的度數(shù)為( )

A. 80°B. 90°

C. 100°D. 110°

查看答案和解析>>

同步練習(xí)冊(cè)答案