【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,點(diǎn)E在BC的延長線上,且∠DEC=∠BAC.
(1)求證:DE是⊙O的切線;
(2)若AC∥DE,當(dāng)AB=8,CE=2時(shí),求AC的長.
【答案】(1)證明見解析;(2)AC的長為.
【解析】(1)先判斷出BD是圓O的直徑,再判斷出BD⊥DE,即可得出結(jié)論;
(2)先判斷出AC⊥BD,進(jìn)而求出BC=AB=8,進(jìn)而判斷出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判斷出△CFD∽△BCD,即可得出結(jié)論.
(1)如圖,連接BD,
∵∠BAD=90°,
∴點(diǎn)O必在BD上,即:BD是直徑,
∴∠BCD=90°,
∴∠DEC+∠CDE=90°.
∵∠DEC=∠BAC,
∴∠BAC+∠CDE=90°.
∵∠BAC=∠BDC,
∴∠BDC+∠CDE=90°,
∴∠BDE=90°,即:BD⊥DE.
∵點(diǎn)D在⊙O上,
∴DE是⊙O的切線;
(2)∵DE∥AC.
∵∠BDE=90°,
∴∠BFC=90°,
∴CB=AB=8,AF=CF=AC,
∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,
∴∠CDE=∠CBD.
∵∠DCE=∠BCD=90°,
∴△BCD∽△DCE,
∴,
∴,
∴CD=4.
在Rt△BCD中,BD==4,
同理:△CFD∽△BCD,
∴,
∴,
∴CF=,
∴AC=2AF=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,已知AB=3,點(diǎn)E,F(xiàn)分別在BC、CD上,且∠BAE=30°,∠DAF=15°,則△AEF的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)為10元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克,且10≤x≤18)之間的函數(shù)關(guān)系如圖所示:
(1)求y(千克)與銷售價(jià)z的函數(shù)關(guān)系式;
(2)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公元3世紀(jì),古希臘數(shù)學(xué)家丟番圖(Diophantus)在其《算術(shù)》一書中設(shè)置了以下問題:已知兩正整數(shù)之和為20,乘積為96,求這兩個(gè)數(shù).因?yàn)閮蓴?shù)之和為20,所以這兩個(gè)數(shù)不可能同時(shí)大于10,也不可能同時(shí)小于10,必定是一個(gè)大于10,一個(gè)小于10.根據(jù)如圖所示的設(shè)法,可設(shè)一個(gè)數(shù)為,則另一個(gè)數(shù)為,根據(jù)兩數(shù)之積為96,可得.請根據(jù)以上思路解決下列問題:
(1)若兩個(gè)正整數(shù)之和為100,大數(shù)比小數(shù)大,根據(jù)丟番圖的設(shè)法,這兩個(gè)正整數(shù)可表示為____和___;
(2)請你根據(jù)丟番圖的運(yùn)算方法,計(jì)算的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中,發(fā)生的概率是的是( )
A.從一副撲克牌中,任意抽取其中的一張,抽到紅桃的概率
B.一個(gè)圓盤被染成紅、黃、藍(lán)、紫四種顏色,隨機(jī)轉(zhuǎn)動(dòng)一次,轉(zhuǎn)盤停止時(shí),指針剛好指向紅色的概率
C.小明開車到十字路口時(shí),遇到紅燈的概率
D.一道單選題有四個(gè)備用選項(xiàng), 從中隨機(jī)選一個(gè)作答,答對的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動(dòng)點(diǎn)P滿足S△PAB=S矩形ABCD,則點(diǎn)P到A、B兩點(diǎn)的距離之和PA+PB的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P(3,3),點(diǎn)B、A分別在x軸正半軸和y軸正半軸上,∠APB=90°,則OA+OB=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com