【題目】如圖,在平面直角坐標系中,拋物線y=x2﹣mx+4與y軸交于點C,過點C作x軸的平行線交拋物線于點B,點A在拋物線上,點B關于點A的對稱點D恰好落在x軸負半軸上,過點A作x軸的平行線交拋物線于點E.若點A、D的橫坐標分別為1、﹣1,則線段AE與線段CB的長度和為_____.
【答案】4
【解析】
求得B的縱坐標為4,然后根據(jù)題意求得A的縱坐標2,即可得到5-m=2,求得m的值,得到拋物線為y=x2-3x+4,根據(jù)坐標特征求得B、A、E的坐標即可求得結果.
解:∵拋物線y=x2﹣mx+4與y軸交于點C,
∴C(0,4),
∵BC∥x軸,
∴點B的縱坐標為4,
∵點A的橫坐標為1,
把x=1代入y=x2﹣mx+4得,y=5﹣m,
∴A(1,5﹣m),
∵點B關于點A的對稱點D恰好落在x軸負半軸上,
∴AD=AB,
∴點A的縱坐標為2,
∴5﹣m=2,
解得m=3,
∴拋物線為y=x2﹣3x+4,
∴B(3,4),
∴BC=3,
把y=2代入y=x2﹣3x+4得,2=x2﹣3x+4,
解得x=1和2,
∴AE=2﹣1=1,
∴線段AE與線段CB的長度和為4,
故答案為4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過,,三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點,使的值最小,求點的坐標;
(3)點為軸上一動點,在拋物線上是否存在一點,使以,,,四點構成的四邊形為平行四邊形?若存在,求點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設函數(shù)y1=,y2=﹣(k>0).
(1)當2≤x≤3時,函數(shù)y1的最大值是a,函數(shù)y2的最小值是a﹣4,求a和k的值.
(2)設m≠0,且m≠﹣1,當x=m時,y1=p;當x=m+1時,y1=q.圓圓說:“p一定大于q”.你認為圓圓的說法正確嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接三角形,AB為⊙O的直徑,將△ABC沿直線AB折疊得到△ABD,交⊙O于點D.連接CD交AB于點E,延長BD和CA相交于點P,過點A作AG∥CD交BP于點G.
(1)求證:直線GA是⊙O的切線;
(2)求證:AC2=GDBD;
(3)若tan∠AGB=,PG=6,求cos∠P的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑為AB,點C在圓周上(異于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E是邊BC上任意一點(點E不與點B、C重合),連結DE,點C關于DE的對稱點為C1,連結AC1并延長交DE的延長線于點M,F是AC1的中點,連結DF.
(猜想)如圖①,∠FDM的大小為 度.
(探究)如圖②,過點A作AM1∥DF交MD的延長線于點M1,連結BM.求證:△ABM≌△ADM1.
(拓展)如圖③,連結AC,若正方形ABCD的邊長為2,則△ACC1面積的最大值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,,,為格點,為小正方形邊的中點.
(1)的長等于_________;
(2)點,分別為線段,上的動點,當取得最小值時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段,,并簡要說明點和點的位置是如何找到的(不要求證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在全球關注的抗擊“新冠肺炎”中某跨國科研中心的一個團隊研制了一種助治“新冠附炎”的新藥,在試驗藥效時發(fā)現(xiàn),如果成人按規(guī)定的制量服用,那么服藥后2小時血液中含藥量最高,達每毫升8微克(1微克=毫克),接著逐步安減,10小時時血液中含藥最為每毫升3微克,每毫升血液中含藥量(微克)隨時間(小時)的變化如圖所示.
(1)分別求線段所表示的函數(shù)關系式;
(2)如果每毫升血液中含藥量為4微克或4微克以上時對治病是有效的,那么這個有效時間是多長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為更精準地關愛留守學生,某學校將留守學生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學校.某數(shù)學小組隨機調(diào)查了一個班級,發(fā)現(xiàn)該班留守學生數(shù)量占全班總人數(shù)的20%,并將調(diào)查結果制成如下兩幅不完整的統(tǒng)計圖.
(1)該班共有 名留守學生,B類型留守學生所在扇形的圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補充完整;
(3)已知該校共有2400名學生,現(xiàn)學校打算對D類型的留守學生進行手拉手關愛活動,請你估計該校將有多少名留守學生在此關愛活動中受益?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com