【題目】如圖所示,在邊長(zhǎng)為a米的正方形草坪上修建兩條寬為b米的道路.
(1)為了求得剩余草坪的面積,小明同學(xué)想出了兩種辦法,結(jié)果分別如下:
方法①: 方法②:
請(qǐng)你從小明的兩種求面積的方法中,直接寫出含有字母a,b代數(shù)式的等式是:
(2)根據(jù)(1)中的等式,解決如下問題:
①已知:,求的值;
②己知:,求的值.
【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2;(2)ab=-2.5;(x-2019)2=5.
【解析】
(1)方法①是根據(jù)已知條件先表示出矩形的長(zhǎng)和寬,再根據(jù)矩形的面積公式即可得出答案;方法②是正方形的面積減去兩條道路的面積,即可得出剩余草坪的面積;根據(jù)(1)得出的結(jié)論可得出;
(2)①分別把的值和的值代入(1)中等式,即可得到答案;
②根據(jù)題意,把(x-2018)和(x-2020)變成(x-2019)的形式,然后計(jì)算完全平方公式,展開后即可得到答案.
解:(1)方法①:草坪的面積=(a-b)(a-b)=.
方法②:草坪的面積=;
等式為:
故答案為:,;
(2)①把代入
∴,
∴
②原式可化為:
∴
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年3月28日是全國(guó)中小學(xué)生安全教育日,某學(xué)校為加強(qiáng)學(xué)生的安全意識(shí),組織了全校1500名學(xué)生參加安全知識(shí)競(jìng)賽,從中抽取了部分學(xué)生成績(jī)(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖,解答下列問題:
頻率分布表 頻數(shù)分布直方圖
(1)這次抽取了名學(xué)生的競(jìng)賽成績(jī)進(jìn)行統(tǒng)計(jì),其中: , ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若成績(jī)?cè)?0分以下(含70分)的學(xué)生為安全意識(shí)不強(qiáng),有待進(jìn)一步加強(qiáng)安全教育,則該校安全意識(shí)不強(qiáng)的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)認(rèn)真閱讀,回答下面問題:如圖,為的中線,與相等嗎?(友情提示:表示三角形面積)
解:過點(diǎn)作邊上的高,
∵為的中線
∴
∵
∴
(1)用一句簡(jiǎn)潔的文字表示上面這段內(nèi)容的結(jié)論;
(2)利用上面所得的結(jié)論,用不同的割法分別把下面兩個(gè)三角形面積4等分,(只要割線不同就算一種)
(3)已知:為的中線,點(diǎn)為邊上的中點(diǎn),若的面積為20,,求點(diǎn)到邊的距離為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PA、PC與⊙O分別相切于點(diǎn)A、C,PC交AB的延長(zhǎng)線于點(diǎn)D.DE⊥PO交PO的延長(zhǎng)線于點(diǎn)E.
(1)求證:∠EPD=∠EDO;
(2)若PC=6,tan∠PDA=,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PA、PC與⊙O分別相切于點(diǎn)A、C,PC交AB的延長(zhǎng)線于點(diǎn)D.DE⊥PO交PO的延長(zhǎng)線于點(diǎn)E.
(1)求證:∠EPD=∠EDO;
(2)若PC=6,tan∠PDA=,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點(diǎn)M、N,點(diǎn)P在AB的延長(zhǎng)線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線;
(2)若BC=2,sin∠BCP=,求⊙O的半徑及△ACP的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,點(diǎn)A的坐標(biāo)為(10,0),拋物線y=ax2+bx+4過點(diǎn)B,C兩點(diǎn),且與x軸的一個(gè)交點(diǎn)為D(﹣2,0),點(diǎn)P是線段CB上的動(dòng)點(diǎn),設(shè)CP=t(0<t<10).
(1)請(qǐng)直接寫出B、C兩點(diǎn)的坐標(biāo)及拋物線的解析式;
(2)過點(diǎn)P作PE⊥BC,交拋物線于點(diǎn)E,連接BE,當(dāng)t為何值時(shí),∠PBE和Rt△OCD中的一個(gè)角相等?
(3)點(diǎn)Q是x軸上的動(dòng)點(diǎn),過點(diǎn)P作PM∥BQ,交CQ于點(diǎn)M,作PN∥CQ,交BQ于點(diǎn)N,當(dāng)四邊形PMQN為正方形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-4,0)、B(0,2),點(diǎn)P(a,a).
(1)當(dāng)a=2時(shí),將△AOB繞點(diǎn)P(a,a)逆時(shí)針旋轉(zhuǎn)90°得△DEF,點(diǎn)A的對(duì)應(yīng)點(diǎn)為D,點(diǎn)O的對(duì)應(yīng)點(diǎn)為E,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)F,在平面直角坐標(biāo)系中畫出△DEF,并寫出點(diǎn)D的坐標(biāo) ;
(2)作線段AB關(guān)于P點(diǎn)的中心對(duì)稱圖形(點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別是G、H),若四邊形ABGH是正方形,則a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,
請(qǐng)按要求完成下列各題:
(1)用2B鉛筆畫AD∥BC(D為格點(diǎn)),連接CD;
(2)線段CD的長(zhǎng)為 ;
(3)請(qǐng)你在△ACD的三個(gè)內(nèi)角中任選一個(gè)銳角,若你所選的銳角是 ,則它所對(duì)應(yīng)的正弦函數(shù)值是 ;
(4)若E為BC中點(diǎn),則tan∠CAE的值是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com