【題目】請認(rèn)真閱讀,回答下面問題:如圖,的中線,相等嗎?(友情提示:表示三角形面積)

解:過點作邊上的高

的中線

1)用一句簡潔的文字表示上面這段內(nèi)容的結(jié)論;

2)利用上面所得的結(jié)論,用不同的割法分別把下面兩個三角形面積4等分,(只要割線不同就算一種)

3)已知:的中線,點邊上的中點,若的面積為20,,求點邊的距離為多少?

【答案】1)三角形中線平分三角形的面積;或等底同高的三角形,面積相等;(2;(32.5

【解析】

1)根據(jù)推導(dǎo)過程,知三角形中線平分三角形的面積;

2)根據(jù)(1)的結(jié)論,先做出△ABC的一條中線AD,然后再分別作出△ABD和△ACD的一條中線即可;

3)根據(jù)(1)的結(jié)論求得△BED的面積,進(jìn)一步根據(jù)三角形的面積公式求解.

解:(1)三角形中線平分三角形的面積.

2)第一種方法:BE=DE=DF=CF;

第二種方法:BD=CD,AE=BEAF=CF

3))∵ADABC的中線,點EAD邊上的中點,若ABC的面積為20,

SBDE的面積=SABC=5

BD=4,

則點EBC邊的距離是2.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角頂點P1(33),P2P3,…均在直線y=﹣x+4上,設(shè)△P1OA1,△P2A1A2,△P3A2A3,…的面積分別為S1,S2,S3,…依據(jù)圖形所反映的規(guī)律,S2019_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:如圖,在平面直角坐標(biāo)系中,ABC的三個頂點坐標(biāo)分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).

(1)畫出ABC關(guān)于y軸對稱的圖形A1B1C1,并直接寫出C1點坐標(biāo);

(2)以原點O為位似中心,位似比為1:2,在y軸的左側(cè),畫出ABC放大后的圖形A2B2C2,并直接寫出C2點坐標(biāo);

(3)如果點D(a,b)在線段AB上,請直接寫出經(jīng)過(2)的變化后D的對應(yīng)點D2的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC

重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,海面上B,C兩島分別位于A島的正東和正北方向.一艘船從A島出發(fā),以18海里/時的速度向正北方向航行2小時到達(dá)C島,此時測得B島在C島的南偏東43°.求A,B兩島之間的距離.(結(jié)果精確到0.1海里)(參考數(shù)據(jù):sin43°=0.68,cos43°=0.73,tan43°=0.93)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EBC上一動點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內(nèi)部,延長AFCD于點G,AB=3AD=4

1)如圖,當(dāng)∠DAG=30° 時,求BE的長;

2)如圖,當(dāng)點EBC的中點時,求線段GC的長;

3)如圖,點E在運動過程中,當(dāng)△CFE的周長最小時,直接寫出BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1在正方形ABCD的外側(cè)作兩個等邊三角形ADEDCF,連接AF,BE

(圖1) (圖2) (備用圖)

(1)請判斷:AFBE的數(shù)量關(guān)系是_____________,位置關(guān)系______________;

(2)如圖2,若將條件“兩個等邊三角形ADEDCF”變?yōu)椤皟蓚等腰三角形ADEDCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請作出判斷并給予證明;

(3)若三角形ADEDCF為一般三角形,且AE=DFED=FC,第(1)問中的結(jié)論都能成立嗎?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在邊長為a米的正方形草坪上修建兩條寬為b米的道路.

(1)為了求得剩余草坪的面積,小明同學(xué)想出了兩種辦法,結(jié)果分別如下:

方法①: 方法②:

請你從小明的兩種求面積的方法中,直接寫出含有字母a,b代數(shù)式的等式是:

(2)根據(jù)(1)中的等式,解決如下問題:

①已知:,求的值;

②己知:,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式()或方程():

(1)(2)

(3)(x-5)(x+4)=10;(4).

查看答案和解析>>

同步練習(xí)冊答案