【題目】如圖是一個正方體骰子的表面展開圖,請根據(jù)要求回答問題:

(1)如果1點在上面,3點在左面,幾點在前面?

(2)如果5點在下面,幾點在上面?

【答案】(1)2;(2)2.

【解析】

(1)利用正方體及其表面展開圖的特點可知“3“4相對,“5“2相對,“6“1相對,當1點在上面,3點在左面,可知5點在后面,繼而可得出2點在前面;
(2)根據(jù)(1)可得,如果5點在下面,那么2點在上面.

解:這是一個正方體的平面展開圖,共有六個面,其中面“3和面“4相對,面“5和面“2相對,面“6和面“1相對,

(1)如果1點在上面,3點在左面,2點在前面,可知5點在后面;

(2)如果5點在下面,那么2點在上面.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標為(0,2),點P(t,0)在x軸上,B是線段PA的中點.將線段PB繞著點P順時針方向旋轉90°,得到線段PC,連結OB、BC.

(1)判斷PBC的形狀,并簡要說明理由;

(2)當t0時,試問:以P、O、B、C為頂點的四邊形能否為平行四邊形?若能,求出相應的t的值?若不能,請說明理由;

(3)當t為何值時,AOP與APC相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù) y=ax2﹣2ax+c(a>0)的圖象與 x 軸的負半軸和正半軸分別交于 A、B 兩點,與 y 軸交于點 C,它的頂點為 P,直線 CP 與過點B 且垂直于 x 軸的直線交于點 D,且 CP:PD=1:2,tan∠PDB=

(1) A、B 兩點的坐標分別為 A( ); B( , );

(2)求這個二次函數(shù)的解析式;

(3)在拋物線的對稱軸上找一點M 使|MC﹣MB|的值最大,則點M 的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蘑菇石是我國著名的自然保護區(qū)梵凈山的標志,小明從山腳B點先乘坐纜車到達觀景平臺DE觀景,然后再沿著坡腳為29°的斜坡由E點步行到達蘑菇石”A點,蘑菇石”A點到水平面BC的垂直距離為1890m.如圖,DEBC,BD=1800mDBC=80°,求斜坡AE的長度.(結果精確到0.1m,可參考數(shù)據(jù)sin29°≈0.4848,sin80°≈0.9848cos29°≈0.8746cos80°≈0.1736

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是⊙O的內接三角形,∠BAD是它的一個外角,OPBC交⊙O于點P,僅用無刻度的直尺按下列要求分別畫圖.(保留作圖痕跡,不寫作法)

(1)在圖①中,畫出△ABC的角平分線AF;

(2)在圖②中,畫出△ABC的外角∠BAD的角平分線AG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2

(1)求y與x之間的函數(shù)關系式;

(2)若圖案中三條彩條所占面積是圖案面積的,求橫、豎彩條的寬度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P為△ABC的內心,延長AP交△ABC的外接圓OD,過DDEBC,交AC的延長線于E點.則直線DEO的位置關系是_____AB=4,AD=6,CE=3,則DE_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】韋達定理:若一元二次方程ax2+bx+c=0(a≠0)的兩根分別為x1、x2x1+x2=﹣ , x1x2=閱讀下面應用韋達定理的過程:

若一元二次方程﹣2x2+4x+1=0的兩根分別為x1、x2x12+x22的值.

解:該一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0

由韋達定理可得,x1+x2=﹣=﹣=2,x1x2===﹣

x12+x22=(x1+x22﹣2x1x2

=22﹣2×(﹣

=5

然后解答下列問題:

(1)設一元二次方程2x2+3x﹣1=0的兩根分別為x1,x2不解方程,求x12+x22的值;

(2)若關于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的兩根分別為α,β,且α22=4,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DBCB的延長線于G.

(1)求證:△CDB≌△BAG.

(2)如果四邊形BFDE是菱形,那么四邊形AGBD是什么特殊四邊形?并證明你的結論.

查看答案和解析>>

同步練習冊答案