【題目】如圖,點P為△ABC的內心,延長AP交△ABC的外接圓⊙O于D,過D作DE∥BC,交AC的延長線于E點.①則直線DE與⊙O的位置關系是_____;②若AB=4,AD=6,CE=3,則DE=_____.
【答案】相切
【解析】
①連接OD,根據內心的性質得到∠BAD=∠DAE,再根據圓周角的推論得到,利用垂徑定理得到OD⊥BC,而DE∥BC,即可得到OD⊥DE;
②連接BD,DC,由BC∥DE,得到∠E=∠ACB,∠BCD=∠CDE,根據同弧所對的圓周角相等得到∠ACB=∠ADB,∠BCD=∠BAD,因此∠E=∠ADB,∠CDE=∠BAD,得到△CDE∽△BAD,則,而AB=4,AD=6,CE=3,BD=DC,先計算出CD,再計算出DE.
解:①連OD,如圖,
∵點P為△ABC的內心,
∴∠BAD=∠DAE,
∴,
∴OD⊥BC,
而DE∥BC,
∴OD⊥DE,
∴DE是⊙O的切線;
②連BD,DC,如圖,
則BD=CD,
∵BC∥DE,
∴∠E=∠ACB,∠BCD=∠CDE,
而∠ACB=∠ADB,∠BCD=∠BAD,
∴∠E=∠ADB,∠CDE=∠BAD,
∴△CDE∽△BAD,
∴
而AB=4,AD=6,CE=3,BD=CD,
∴,
∴CD=2,則DE=3
.
故答案為:相切;3.
科目:初中數學 來源: 題型:
【題目】為了了解2014屆某校男生報考泉州市中考體育測試項目的意向,某校課題研究小組從畢業(yè)年段各班男生隨機抽取若干人組成調查樣本,根據收集整理到的數據繪制成以下不完全統(tǒng)計圖.根據以上信息,解答下列問題:
(1)該小組采用的調查方式是____________,被調查的樣本容量是_______;
(2)請補充完整圖中的條形統(tǒng)計圖和扇形統(tǒng)計圖(請標上百分率)(百分率精確到1%);
(3)該校共有600名初三男生,請估計報考A類的男生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,D在CB上,E為AB之中點,AD、CE相交于F,且AD=DB.若∠B=20°,則∠DFE=( )
A. 40° B. 50° C. 60° D. 70°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系xOy中,橫坐標為a的點A在反比例函數y1=(x>0)的圖象上.點A與點A關于點O對稱,一次函數y2=mx+n的圖象經過點A.
(1)設a=2,點B(4,2)在函數y1,y2的圖象上.
①分別求函數y1,y2的表達式;
②直接寫出使y1>y2>0成立的x的范圍.
(2)如圖,設函數y1,y2的圖象相交于點B,點B的橫坐標為3a,△AA′B的面積為16,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC為直角,以AB為直徑作⊙O交AC于點D,點E為BC中點,連結DE,DB.
(1)求證:DE與⊙O相切;
(2)若∠C=30°,求∠BOD的度數;
(3)在(2)的條件下,若⊙O半徑為2, 求陰影部分面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形ABCD的邊長為4cm,E,F分別為邊DC,BC上的點,BF=1cm,CE=2cm,BE,DF相交于點G,求四邊形CEGF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=38°.
(1)如圖①,若D為弧AB的中點,求∠ABC和∠ABD的大小;
(2)如圖②,過點D作⊙O的切線,與AB的延長線交于點P,若DP∥AC,求∠OCD的大�。�
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,⊿ABC中,AB=AC,以AB為直徑的⊙O交BC于點P,PD⊥AC于點D.
(1)求證:PD是⊙O的切線.
(2)若∠CAB=120°,AB=2,求BC的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com