【題目】如圖所示,已知 AD//BC, 點 E 為 CD 上一點,AE、BE 分別平分∠DAB、∠CBA,BE交 AD 的延長線于點 F.求證:(1)△ABE≌△AEF;(2) AD+BC=AB
【答案】見解析
【解析】
(1)根據(jù)角平分線的定義可得∠1=∠2,∠3=∠4,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠2=∠F,然后求出∠1=∠F,再利用“角角邊”證明△ABE和△AFE全等即可;
(2)根據(jù)全等三角形對應(yīng)邊相等可得BE=FE,然后利用“角邊角”證明△BCE和△FDE全等,根據(jù)全等三角形對應(yīng)邊相等可得BC=DF,然后根據(jù)AD+BC整理即可得證.
(1)證明:如圖,∵AE、BE分別平分∠DAB、∠CBA,
∴∠1=∠2,∠3=∠4,
∵AD∥BC,
∴∠2=∠F,∠1=∠F,
在△ABE和△AFE中,
∴△ABE≌△AFE(AAS);
(2)證明:∵△ABE≌△AFE,
∴BE=EF,
在△BCE和△FDE中,
∴△BCE≌△FDE(ASA),
∴BC=DF,
∴AD+BC=AD+DF=AF=AB,
即AD+BC=AB.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是的外角平分線上一點,且滿足,過點作于點,交的延長線于點,則下列結(jié)論:①;②;③;④.
其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,四邊形ABCD是正方形,G是BC上的任意一點,DE⊥AG,BF⊥AG,垂足分別為點E,F.求證:;
(2)在圖1的基礎(chǔ)上,若過點C作CH⊥DE,垂足為點H,連接AH,CF,如圖2.求證:四邊形AFCH為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠A的外角平分線交BC的延長線于點D.
(1)線段BC的垂直平分線交DA的延長線于點P,連接PB,PC.
①利用尺規(guī)作圖補全圖形1,不寫作法,保留痕跡;
②求證:∠BPC=∠BAC;
(2)如圖2,若Q是線段AD上異于A,D的任意一點,判斷QB+QC與AB+AC的大小,并予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的周長是20,OB和OC分別平分∠ABC和∠ACB,OD⊥BC于點D,且OD=3,則△ABC的面積是( 。
A. 20 B. 25 C. 30 D. 35
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△是等邊三角形,為的中點,,垂足為點,∥,,下列結(jié)論錯誤的是( )
A.30°B.
C.△的周長為10D.△的周長為9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎和小紅兩位同學(xué)在學(xué)習(xí)“概率”時,做投擲骰子(質(zhì)地均勻的正方體)實驗,他們共做了60次實驗,實驗的結(jié)果如下:
(1)計算“3點朝上”的頻率和“5點朝上”的頻率.
(2)小穎說:“根據(jù)實驗,一次實驗中出現(xiàn)5點朝上的概率最大”;小紅說:“如果投擲600次,那么出現(xiàn)6點朝上的次數(shù)正好是100次.”小穎和小紅的說法正確嗎?為什么?
(3)小穎和小紅各投擲一枚骰子,用列表或畫樹狀圖的方法求出兩枚骰子朝上的點數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=4,AD=2.點Q與點P同時從點A出發(fā),點Q以每秒1個單位的速度沿A→D→C→B的方向運動,點P以每秒3個單位的速度沿A→B→C→D的方向運動,當P,Q兩點相遇時,它們同時停止運動.設(shè)Q點運動的時間為(秒),在整個運動過程中,當△APQ為直角三角形時,則相應(yīng)的的值或取值范圍是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為6cm,點E,M分別是線段BD,AD上的動點,連接AE并延長,交邊BC于F,過M作MN⊥AF,垂足為H,交邊AB于點N.
(1)如圖①,若點M與點D重合,求證:AF=MN;
(2)如圖②,若點M從點D出發(fā),以1cm/s的速度沿DA向點A運動,同時點E從點B出發(fā),以cm/s的速度沿BD向點D運動,運動時間為ts.
①設(shè)BF=ycm,求y關(guān)于t的函數(shù)表達式;
②當BN=2AN時,連接FN,求FN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com