【題目】如圖,是的直徑,是延長線上一點,與相切于點,,.
(1)求的度數(shù);
(2)求證:;
(3)若,求出圖中陰影部分的面積.
【答案】(1);(2)證明見解析;(3)
【解析】
(1)連接OE,證明△OBE為等邊三角形,得到∠EOC=60°,根據(jù)切線的性質(zhì)得到OE⊥CD,根據(jù)直角三角形的性質(zhì)計算,得到答案;
(2)根據(jù)圓周角定理求出∠EAB=30°,得到EA=EC,根據(jù)含30°的直角三角形的性質(zhì)計算,證明結(jié)論;
(3)求出∠AOE=120°,根據(jù)扇形面積公式、三角形的面積公式計算.
(1)解:連接OE.
∵OB=OE,∠ABE=60°,
∴△OBE為等邊三角形,
∴∠EOC=60°.
∵CD與⊙O相切,
∴OE⊥CD,
∴∠C=90°﹣60°=30°;
(2)證明:由圓周角定理得,∠EAB=∠EOB=30°,
∴∠EAB=∠C,
∴EA=EC.
∵AD⊥CD,
∴∠DAC=90°﹣∠C=60°,
∴∠DAE=30°,
∴AE=2DE,
∴EC=2DE;
(3)解:∵∠EOC=60°,
∴∠AOE=120°,
則陰影部分的面積=扇形AOE的面積﹣△AOE的面積
=××3×3×tan60°=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市計劃印制一批宣傳冊該宣傳冊每本共頁,由兩種彩頁構(gòu)成,已知種彩頁制版費元/張,種彩頁制版費元/張,該宣傳冊的制版費共計元(注:彩頁制版費與印數(shù)無關(guān))
每本宣傳冊兩種彩頁各有多少張;
據(jù)了解,種彩頁印刷費元/張,種彩頁印刷費元/張,這批宣傳冊的制版費與印刷費的和不超過元如果按到該市展臺處的參觀者人手一冊發(fā)放宣傳冊,預(yù)計最多能發(fā)給多少位參觀者.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對于平面直角坐標(biāo)系中的線段和點,在中,當(dāng)邊上的高為2時,稱為的“等高點”,稱此時為的“等高距離”.
(1)若點的坐標(biāo)為(1,2),點的坐標(biāo)為(4,2),則在點 (1,0),(,4), (0,3)中,的“等高點”是點___;
(2)若(0,0),=2,當(dāng)的“等高點”在軸正半軸上且“等高距離”最小時,點的坐標(biāo)是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB 是⊙O的直徑,∠DAB的角平分線AC交⊙O于點C,過點C作CD⊥AD于D,AB的延長線與DC的延長線相交于點P,∠ACB的角平分線CE交AB于點F、交⊙O于E.
(1)求證:PC與⊙O相切;
(2)求證:PC=PF;
(3)若AC=8,tan∠ABC=,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點是反比例函數(shù)圖像上的一個動點,連接,若將線段繞點逆時針旋轉(zhuǎn)得到線段,則過點的反比例函數(shù)解析式為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一段長為1000m的筆直道路AB上,甲、乙兩名運動員分別從A,B兩地出發(fā)進行往返跑訓(xùn)練.已知甲比乙先出發(fā)30秒鐘,甲距A點的距離y/m與其出發(fā)的時間x/分鐘的函數(shù)圖象如圖所示.乙的速度是200m/分鐘,當(dāng)乙到達(dá)A點后立即按原速返回B點.當(dāng)兩人第二次相遇時,乙跑的總路程是_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E是邊BC上一點,連接AE,過點E作EM⊥AE,交對角線AC于點M,過點M作MN⊥AB,垂足為N,連接NE.
(1)求證:AE=NE+ME;
(2)如圖2,延長EM至點F,使EF=EA,連接AF,過點F作FH⊥DC,垂足為H.
猜想CH與FH存在的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在(2)的條件下,若點G是AF的中點,連接GH.當(dāng)GH=CH時,直接寫出GH與AC之間存在的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與x軸交于點A,與y軸交于點B,直線與x軸交于點C.
(1)求點B的坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記線段圍成的區(qū)域(不含邊界)為G.
①當(dāng)時,結(jié)合函數(shù)圖象,求區(qū)域G內(nèi)整點的個數(shù);
②若區(qū)域G內(nèi)恰有2個整點,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[閱讀理解]
當(dāng)且時,因為所以從而(當(dāng)且僅當(dāng)時取等號).由此可知,在且的條件下,當(dāng)時,代數(shù)式有最小值為.
[實踐應(yīng)用]
(1)在的條件下,當(dāng) 時,有最小值,且最小值為 ;
(2)設(shè),求的最小值,并指出當(dāng)取得該最小值時對應(yīng)的的值;
[拓展延伸]
在平面直角坐標(biāo)系中,點點.點是函數(shù)在第一象限內(nèi)圖象上的一個動點,過點作垂直于軸,垂直于軸,垂足分別為點.設(shè)點的橫坐標(biāo)為,四邊形的面積為.
(3)求和之間的函數(shù)關(guān)系式:
(4)試判斷當(dāng)的值最小時,四邊形是何特殊四邊形,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com