【題目】一副三角板按如圖方式擺放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°.E為AB的中點,過點E作EF⊥CD于點F.若AD=4cm,則EF的長為 .
【答案】 .
【解析】
試題分析:過A作AG⊥DC于G,得到∠ADG=45°,進而得到AG的值 ,在30°的直角三角形ABD和45°直角三角形BCD中,計算出BD,CB的值.再由AG∥EF∥BC, E是AB的中點,得到F為CG的中點,由梯形中位線定理得到EF的長.
試題解析:過A作AG⊥DC于G,∵∠DCB=∠CBD=45°,∠ADB=90°,∴∠ADG=45°,∴AG= =,∵∠ABD=30°,∴BD=AD= ,∵∠CBD=45°,∴CB==.∵AG⊥CG,EF⊥CG,CB⊥CG,∴AG∥EF∥BC,∵E是AB的中點,∴F為CG的中點,∴EF=(AG+BC)= =.故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,AD∥BC,要使四邊形ABCD成為平行四邊形還需要條件( )
A.AB=DC
B.∠1=∠2
C.AB=AD
D.∠D=∠B
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y= 的圖象與性質(zhì)進行了探究.下面是小東的探究過程,請補充完整,并解決相關(guān)問題:
(1)函數(shù)y= 的自變量x的取值范圍是
(2)表格是y與x的幾組對應(yīng)值.
x | … | ﹣2 | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | 4 | … | |||
y | … | 2 | 4 | 2 | m | … |
表中m的值為
(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點. 根據(jù)描出的點,畫出函數(shù)y= 的大致圖象;
(4)結(jié)合函數(shù)圖象,請寫出函數(shù)y= 的一條性質(zhì):
(5)如果方程 =a有2個解,那么a的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某交警在一個路口統(tǒng)計的某時段來往車輛的車速情況如表:
車速(km/h) | 48 | 49 | 50 | 51 | 52 |
車輛數(shù)(輛) | 5 | 4 | 8 | 2 | 1 |
則上述車速的中位數(shù)和眾數(shù)分別是( )
A.50,8
B.50,50
C.49,50
D.49,8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運動屬于平移的是( )
A. 冷水加熱過程中小氣泡上升成為大氣泡
B. 急剎車時汽車在地面上的滑動
C. 投籃時的籃球運動
D. 隨風(fēng)飄動的樹葉在空中的運動
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了準(zhǔn)確反映某車隊10名司機1月份耗去的汽油費用,且便于比較,那么選用最合適、直觀的統(tǒng)計圖是( )
A. 統(tǒng)計表B. 條形統(tǒng)計圖C. 扇形統(tǒng)計圖D. 折線統(tǒng)計圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注,某校學(xué)生會為了解節(jié)能減排、垃圾分類知識
的普及情況,隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,
并將檢查結(jié)果繪制成下面兩個統(tǒng)計圖.
(1)本次調(diào)查的學(xué)生共有__________人,估計該校1200 名學(xué)生中“不了解”的人數(shù)是__________人.
(2)“非常了解”的4 人有兩名男生, 兩名女生,若從中隨機抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com