【題目】我市公交總公司為節(jié)約資源同時惠及民生,擬對一些乘客數(shù)量較少的路線換成中巴車.該公司計劃購買臺中巴車,現(xiàn)有甲、乙兩種型號,已知購買一臺甲型車比購買一臺乙型車少萬元,購買臺甲型車比購買臺乙型車多萬元.

1)問購買一臺甲型車和一臺乙型車分別需要多少萬元?

2)經(jīng)了解,每臺甲型車每年節(jié)省費用萬元,每臺乙型車每年節(jié)省費用萬元,若要使購買的這批中巴車每年至少能節(jié)省萬,則購買甲型車至少多少臺?

【答案】1)購買一臺甲型車和一臺乙型車分別需要萬元、萬元;(2)購買甲型車至少

【解析】

1)設(shè)購買甲型車需要萬元,則乙型車需要萬元,列方程;

2)設(shè)購買甲型車臺,則購買乙型車臺,列不等式

解:(1)設(shè)購買甲型車需要萬元,則乙型車需要萬元,

根據(jù)題意得:

解得,

(萬元),

購買一臺甲型車需要50萬元,購買一臺乙型車需要60萬元.

答:購買一臺甲型車和一臺乙型車分別需要萬元、萬元;

2)設(shè)甲型車購買臺,則乙型車購買

根據(jù)題意得:,

解得:,

答:購買甲型車至少臺.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為組織代表隊參加市拜炎帝、誦經(jīng)典吟誦大賽,初賽后對選手成績進行了整理,分成5個小組(x表示成績,單位:分),A組:75≤x80;B組:80≤x85C組:85≤x90;D組:90≤x95;E組:95≤x100.并繪制出如圖兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中信息,解答下列問題:

1)參加初賽的選手共有 名,請補全頻數(shù)分布直方圖;

2)扇形統(tǒng)計圖中,C組對應(yīng)的圓心角是多少度?E組人數(shù)占參賽選手的百分比是多少?

3)學(xué)校準(zhǔn)備組成8人的代表隊參加市級決賽,E6名選手直接進入代表隊,現(xiàn)要從D組中的兩名男生和兩名女生中,隨機選取兩名選手進入代表隊,請用列表或畫樹狀圖的方法,求恰好選中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形的項點都在坐標(biāo)軸上,若面積分別為,若雙曲線恰好經(jīng)過的中點,則的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸交于、兩點(在點的左側(cè)),與軸交于點,頂點為

1)請求出兩點的坐標(biāo);

2)將拋物線繞平面內(nèi)的某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后得到拋物線,拋物線的頂點為,與軸相交于、兩點(在點的右側(cè)),使得拋物線過點,且以點、、為頂點的四邊形為平行四邊形,請求出所有滿足條件的拋物線的頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是小安填寫的數(shù)學(xué)實踐活動報告的部分內(nèi)容

測量鐵塔頂端到地面的高度

測量目標(biāo)示意圖

相關(guān)數(shù)據(jù)

CD=20mɑ=45°,β=52°

求鐵塔的高度FE(結(jié)果精確到1)(參考數(shù)據(jù):sin52°≈0.79, cos52°≈0.62,tan52°≈1.28

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EF分別是AB、CD的中點,EGAF,FHCE,垂足分別為G,H,設(shè)AG=x,圖中陰影部分面積為y,則yx之間的函數(shù)關(guān)系式是( 。

A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx3A1,0),B(﹣3,0),直線AD交拋物線于點D,點D的橫坐標(biāo)為﹣2,點Pm,n)是線段AD上的動點.

1)求直線AD及拋物線的解析式;

2)過點P的直線垂直于x軸,交拋物線于點Q,求線段PQ的長度lm的關(guān)系式,m為何值時,PQ最長?

3)在平面內(nèi)是否存在整點(橫、縱坐標(biāo)都為整數(shù))R,使得PQ,D,R為頂點的四邊形是平行四邊形?若存在,直接寫出點R的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知均為的等邊三角形,點的中點,過點平行的直線交射線于點

1)當(dāng),,三點在同一直線上時(如圖1),求證:中點;

2)將圖1中的繞點旋轉(zhuǎn),當(dāng),三點在同一直線上時(如圖2),求證:為等邊三角形;

3)將圖2繞點繼續(xù)順時針旋轉(zhuǎn)多少度時,點恰好第一次位于線段中點,試作出圖形并直接寫出繞點繼續(xù)旋轉(zhuǎn)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y = ax2 2ax + c圖像的頂點為P,與x軸交于AB兩點(其中點A在點B的左側(cè)),與y軸交于點C,它的對稱軸交直線BC交于點D,且CDBD=12

1)求B點坐標(biāo);

2)當(dāng)△CDP的面積是1時,求二次函數(shù)的表達式;

3)若直線BPy軸于點E,求當(dāng)△CPE是直角三角形時的a的值.

查看答案和解析>>

同步練習(xí)冊答案