【題目】如圖,四邊形ABCD為矩形,將矩形ABCD沿MN折疊,折痕為MN,點B的對應(yīng)點B′落在AD邊上,已知AB6AD4

(1)若點B′與點D重合,連結(jié)DM,BN,求證:四邊形BMB′N為菱形;

(2)(1)問條件下求出折痕MN的長.

【答案】(1)證明見解析;(2)MN=.

【解析】

1)首先證明四邊形BMDN是平行四邊形,再證明BMDM,即可證明四邊形BMB'N為菱形.(2)首先設(shè)BMx,利用在RtAMB′中,結(jié)合勾股定理,求解x的值,在計算NQ,在RtMNQ中,利用勾股定理,即可得MN的長.

解:(1)由折疊可得,BMDM,∠BMN=∠DMN,

CDAB,

∴∠BMN=∠DNM

∴∠DMN=∠DNM,

DNDM,

BMMDDN

又∵DNBM

∴四邊形BMDN是平行四邊形,

又∵BMDM,

∴四邊形BMB'N為菱形;

(2)設(shè)BMx,則DMx,AM6x,

RtAMB′中,由勾股定理可得,(6x)2+42x2,

求解得x,

DMDN

如圖,過點MMQCD于點Q,則

NQ-(6-),

RtMNQ中,利用勾股定理可得MN

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】學校新到一批理、化、生實驗器材需要整理,若實驗管理員李老師一人單獨整理需要40分鐘完成,現(xiàn)在李老師與工人王師傅共同整理20分鐘后,李老師因事外出,王師傅再單獨整理了20分鐘才完成任務(wù).

(1)王師傅單獨整理這批實驗器材需要多少分鐘?

(2)學校要求王師傅的工作時間不能超過30分鐘,要完成整理這批器材,李老師至少要工作多少分鐘?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家綠化養(yǎng)護公司各自推出了校園綠化養(yǎng)護服務(wù)的收費方案.

甲公司方案:每月的養(yǎng)護費用y(元)與綠化面積x(平方米)的關(guān)系如圖所示.

乙公司方案:綠化面積不超過1000平方米時,每月收取費用5500元;綠化面積超過1000平方米時,超過的部分每月每平方米加收4元.

(1)求如圖所示的yx的函數(shù)表達式;

(2)如果某學校目前的綠化面積是1200平方米.那么選擇哪家公司的服務(wù)比較劃算.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】江津區(qū)某玩具商城在六一兒童節(jié)來臨之際,以49/個的價格購進某種玩具進行銷售,并預(yù)計當售價為50/個時,每天能售出50個玩具,且在一定范圍內(nèi),當每個玩具的售價平均每提高0.5元時,每天就會少售出3個玩具。

(1)若玩具售價不超過60/,每天售出玩具總成本不高于686,預(yù)計每個玩具售價的取值范圍;

(2)在實際銷售中,玩具城以(1)中每個玩具的最低售價及相應(yīng)的銷量為基礎(chǔ),進一步調(diào)整了銷售方案,將每個玩具的售價提高了%,從而每天的銷售量降低了%,當每天的銷售利潤為147元時,a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=+bx+c(a0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c3b;(3)8a+7b+2c0;(4)若點A(﹣3,)、點B()、點C()在該函數(shù)圖象上,則;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為,且,則﹣15.其中正確的結(jié)論有( .

A.2個 B.3個 C.4個 D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形紙片ABCD,點EF分別在邊AB,CD上,連接EF.將∠BEF對折,點B落在直線EF上的點B處,得折痕EM;將∠AEF對折,點A落在直線EF上的點A處,得折痕EN

1)判斷直線EN,ME的位置關(guān)系,并說明理由;

2)設(shè)∠MEN的平分線EP交邊CD于點P,∠MEN的一條三等分線EQ交邊CD于點Q.求∠PEQ的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD,AB=AC,E、F分別是BC、AD的中點,連接AE、CF.

求證:四邊形AECF是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,BC,D的坐標分別是(17),(11),(41),(61),以CD,E為頂點的三角形與△ABC相似,則點E的坐標不可能是( )

A. 6,0B. 6,3C. 65D. 4,2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的部分圖象如圖所示,則關(guān)于的一元二次方程的解為

查看答案和解析>>

同步練習冊答案