【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點(diǎn)F作FG⊥CA,交CA的延長(zhǎng)線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】D

【解析】試題解析:∵四邊形ADEF為正方形,

∴∠FAD=90°,AD=AF=EF,

∴∠CAD+FAG=90°,

FGCA,

∴∠GAF+AFG=90°,

∴∠CAD=AFG,

FGAACD中,

,

∴△FGA≌△ACD(AAS),

AC=FG,①正確;

BC=AC,

FG=BC,

∵∠ACB=90°,F(xiàn)GCA,

FGBC,

∴四邊形CBFG是矩形,

∴∠CBF=90°,SFAB=FBFG=S四邊形CBFG,②正確;

CA=CB,C=CBF=90°,

∴∠ABC=ABF=45°,③正確;

∵∠FQE=DQB=ADC,E=C=90°,

∴△ACD∽△FEQ,

AC:AD=FE:FQ,

ADFE=AD2=FQAC,④正確;

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1:y=﹣x+b與直線l2:y=kx+1相交于點(diǎn)A(1,3).

(1)求直線l1、l2的函數(shù)表達(dá)式;

(2)求直線l1、l2x軸圍成的三角形ABC的面積;

(3)求直線l1、l2與坐標(biāo)軸圍成的四邊形ABOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料并解決有關(guān)問題:

我們知道:|x|=.現(xiàn)在我們可以用這一結(jié)論來化簡(jiǎn)含有絕對(duì)值的代數(shù)式,現(xiàn)在我們可以用這一結(jié)論來化簡(jiǎn)含有絕對(duì)值的代數(shù)式,如化簡(jiǎn)代數(shù)式|x+1|+|x﹣2|時(shí),可令x+1=0和x﹣2=0,分別求得x=﹣1,x=2(稱﹣1,2分別為|x+1|與|x﹣2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=﹣1和,x=2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:

①x<﹣1;②﹣1≤x<2;③x≥2.

從而化簡(jiǎn)代數(shù)式|x+1|+|x﹣2|可分以下3種情況:

當(dāng)x<﹣1時(shí),原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;

當(dāng)﹣1≤x<2時(shí),原式=x+1﹣(x﹣2)=3;

當(dāng)x≥2時(shí),原式=x+1+x﹣2=2x﹣1.綜上討論,原式=

通過以上閱讀,請(qǐng)你解決以下問題:

(1)化簡(jiǎn)代數(shù)式|x+2|+|x﹣4|.

(2)求|x﹣1|﹣4|x+1|的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)(1,3)在函數(shù)y= (x>0)的圖象上,正方形ABCD的邊BC在x軸上,點(diǎn)E是對(duì)角線AC、BD的交點(diǎn),函數(shù)y= (x>0)的圖象又經(jīng)過A、E兩點(diǎn),則點(diǎn)E的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)A、B分別在x軸正半軸上,且線段OA、OB(OA<OB)的長(zhǎng)分別等于方程的兩個(gè)根,點(diǎn)C在軸正半軸上,且OB=2OC.

(1)求A、B、C三點(diǎn)坐標(biāo);

(2)將△OBC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后得到,求直線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,,FAD的中點(diǎn),作,垂足E在線段上,連接EF、CF,則下列結(jié)論;;,中一定成立的是______ 把所有正確結(jié)論的序號(hào)都填在橫線上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”(圖1),后人稱其為“趙爽弦圖”,由弦圖變化得到圖2,它是用八個(gè)全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1、S2、S3.若S1+S2+S3=12,則S2的值為_______

(圖1) (圖2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于任意有理數(shù)a,b,定義運(yùn)算:a⊙b=a(a+b)﹣1,等式右邊是通常的加法、減法、乘法運(yùn)算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.

(1)求(﹣2)⊙3的值;

(2)對(duì)于任意有理數(shù)m,n,請(qǐng)你重新定義一種運(yùn)算“”,使得5⊕3=20,寫出你定義的運(yùn)算:m⊕n=   (用含m,n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,E、F是四邊形ABCD的對(duì)角線AC上的兩點(diǎn),AF=CE,DF=BEDFBE

求證:(1)AFD≌△CEB.(2)四邊形ABCD是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案