【題目】一個(gè)不透明袋子中有1個(gè)紅球,1個(gè)綠球和n個(gè)白球,這些球除顏色外無(wú)其他差別.
(1)當(dāng)n=1時(shí),從袋中隨機(jī)摸出1個(gè)球,摸到紅球和摸到白球的可能性是否相同?(在答題卡相應(yīng)位置填“相同”或“不相同”);
(2)從袋中隨機(jī)摸出一個(gè)球,記錄其顏色,然后放回,大量重復(fù)該實(shí)驗(yàn),發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于0.25,則n的值是
(3)在一個(gè)摸球游戲中,所有可能出現(xiàn)的結(jié)果如下:

根據(jù)樹(shù)狀圖呈現(xiàn)的結(jié)果,求兩次摸出的球顏色不同的概率.

【答案】
(1)

解:(1)當(dāng)n=1時(shí),紅球和白球的個(gè)數(shù)一樣,所以被摸到的可能性相同,

故答案為:相同;


(2)2
(3)

由樹(shù)狀圖可知,共有12種結(jié)果,其中兩次摸出的球顏色不同的10種,

所以其概率==


【解析】(1)因?yàn)榧t球和白球的個(gè)數(shù)一樣,所以被摸到的可能性相同;
(2)根據(jù)摸到綠球的頻率穩(wěn)定于0.25,即可求出n的值;
(3)根據(jù)樹(shù)狀圖即可求出兩次摸出的球顏色不同的概率.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用列表法與樹(shù)狀圖法和用頻率估計(jì)概率的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹(shù)狀圖法求概率;在同樣條件下,做大量的重復(fù)試驗(yàn),利用一個(gè)隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定到某個(gè)常數(shù),可以估計(jì)這個(gè)事件發(fā)生的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從熱氣球C上測(cè)得兩建筑物A、B底部的俯角分別為30°和60度.如果這時(shí)氣球的高度CD為90米.且點(diǎn)A、D、B在同一直線(xiàn)上,求建筑物A、B間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C,D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠B.

(1)求證:直線(xiàn)AE是⊙O的切線(xiàn)
(2)若∠D=60°,AB=6時(shí),求劣弧的長(zhǎng)(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索性問(wèn)題:

已知:b是最小的正整數(shù),且a、b滿(mǎn)足(c﹣5)2+|a+b|=0,請(qǐng)回答問(wèn)題:

(1)請(qǐng)直接寫(xiě)出a、b、c的值.a=   ,b=   ,c=   ;

(2)數(shù)軸上a、b、c三個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)A、B、C同時(shí)開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒1個(gè)單位長(zhǎng)度和3個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC.

①t秒鐘過(guò)后,AC的長(zhǎng)度為   (用t的關(guān)系式表示);

請(qǐng)問(wèn):BC﹣AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點(diǎn)M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2.則 cos∠MCN=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動(dòng)一個(gè)單位,得到(0,1),(1,1),(1,0),(2,0),…那么點(diǎn)的坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在9×9的正方形網(wǎng)格中,△ABC三個(gè)頂點(diǎn)在格點(diǎn)上,每個(gè)小正方形的邊長(zhǎng)為1.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系后,若點(diǎn)A的坐標(biāo)為(1,1),點(diǎn)C的坐標(biāo)為(4,2),畫(huà)出平面直角坐標(biāo)系并寫(xiě)出點(diǎn)B的坐標(biāo);

(2)直線(xiàn)l經(jīng)過(guò)點(diǎn)A且與y軸平行,寫(xiě)出點(diǎn)B、C關(guān)于直線(xiàn)l對(duì)稱(chēng)點(diǎn)B1、C1的坐標(biāo);

(3)直接寫(xiě)出BC上一點(diǎn)P(a,b)關(guān)于直線(xiàn)l對(duì)稱(chēng)點(diǎn)P1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=x2﹣4x與x軸交于O,A兩點(diǎn),P為拋物線(xiàn)上一點(diǎn),過(guò)點(diǎn)P的直線(xiàn)y=x+m與對(duì)稱(chēng)軸交于點(diǎn)Q

(1)這條拋物線(xiàn)的對(duì)稱(chēng)軸是 ,直線(xiàn)PQ與x軸所夾銳角的度數(shù)是 .
(2)若兩個(gè)三角形面積滿(mǎn)足S△POQ=S△PAQ , 求m的值
(3)當(dāng)點(diǎn)P在x軸下方的拋物線(xiàn)上時(shí),過(guò)點(diǎn)C(2,2)的直線(xiàn)AC與直線(xiàn)PQ交于點(diǎn)D,求:①PD+DQ的最大值;②PDDQ的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:AB為⊙O的直徑,C是⊙O上一點(diǎn),如圖,AB=12,BC=4 .BH與⊙O相切于點(diǎn)B,過(guò)點(diǎn)C作BH的平行線(xiàn)交AB于點(diǎn)E.

(1)求CE的長(zhǎng);
(2)延長(zhǎng)CE到F,使EF= ,連接BF并延長(zhǎng)BF交⊙O于點(diǎn)G,求BG的長(zhǎng);
(3)在(2)的條件下,連接GC并延長(zhǎng)GC交BH于點(diǎn)D,求證:BD=BG.

查看答案和解析>>

同步練習(xí)冊(cè)答案