【題目】如圖,在9×9的正方形網(wǎng)格中,△ABC三個頂點在格點上,每個小正方形的邊長為1.

(1)建立適當?shù)钠矫嬷苯亲鴺讼岛螅酎cA的坐標為(1,1),點C的坐標為(4,2),畫出平面直角坐標系并寫出點B的坐標;

(2)直線l經(jīng)過點A且與y軸平行,寫出點B、C關(guān)于直線l對稱點B1、C1的坐標;

(3)直接寫出BC上一點P(a,b)關(guān)于直線l對稱點P1的坐標.

【答案】(1)平面直角坐標系如圖所示,B(3,4);(2)B1(﹣1,4),C1(﹣2,2);(3)P1(2﹣a,b).

【解析】

(1)因為點B的坐標為(1,1),所以點B向下平移1個長度單位,再向左平移1個長度單位,即是坐標原點,再寫出點C的坐標即可;

(2)根據(jù)軸對稱的性質(zhì)即可解決問題;

(3)利用軸對稱的性質(zhì)即可解決問題

解:(1)平面直角坐標系如圖所示,B(3,4);

(2)B1(﹣1,4),C1(﹣2,2);

(3)P1(2﹣a,b)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】若關(guān)于x的一元二次方程ax2+3x﹣1=0有兩個不相等的實數(shù)根,則a的取值范圍是  .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于點E,AD=8cm,BC=4cm,AB=5cm.從初始時刻開始,動點P,Q 分別從點A,B同時出發(fā),運動速度均為1cm/s,動點P沿A﹣B﹣﹣C﹣﹣E的方向運動,到點E停止;動點Q沿B﹣﹣C﹣﹣E﹣﹣D的方向運動,到點D停止,設(shè)運動時間為xs,△PAQ的面積為ycm2 , (這里規(guī)定:線段是面積為0的三角形)

解答下列問題:
(1)當x=2s時,y=cm2;當x= s時,y=cm2
(2)當5≤x≤14 時,求y與x之間的函數(shù)關(guān)系式.
(3)當動點P在線段BC上運動時,求出 S梯形ABCD時x的值.
(4)直接寫出在整個運動過程中,使PQ與四邊形ABCE的對角線平行的所有x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明袋子中有1個紅球,1個綠球和n個白球,這些球除顏色外無其他差別.
(1)當n=1時,從袋中隨機摸出1個球,摸到紅球和摸到白球的可能性是否相同?(在答題卡相應位置填“相同”或“不相同”);
(2)從袋中隨機摸出一個球,記錄其顏色,然后放回,大量重復該實驗,發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于0.25,則n的值是
(3)在一個摸球游戲中,所有可能出現(xiàn)的結(jié)果如下:

根據(jù)樹狀圖呈現(xiàn)的結(jié)果,求兩次摸出的球顏色不同的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于點P(x,y)和Q(x,y′),給出如下定義:如果y′= ,那么稱點Q為點P的“關(guān)聯(lián)點”.例如:點(5,6)的“關(guān)聯(lián)點”為點(5,6),點(﹣5,6)的“關(guān)聯(lián)點”為點(﹣5,﹣6).
(1)如果點A(3,﹣1),B(﹣1,3)的“關(guān)聯(lián)點”中有一個在函數(shù)y= 的圖象上,那么這個點是(填“點A”或“點B”).
(2)如果點N*(m+1,2)是一次函數(shù)y=x+3圖象上點N的“關(guān)聯(lián)點”,求點N的坐標.
(3)如果點P在函數(shù)y=﹣x2+4(﹣2<x≤a)的圖象上,其“關(guān)聯(lián)點”Q的縱坐標y′的取值范圍是﹣4<y′≤4,那么實數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組 請結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得;
(Ⅱ)解不等式②,得
(Ⅲ)把不等式①和②的階級在數(shù)軸上表示出來;
(Ⅳ)原不等式組的解集為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在銳角△ABC中,D,E分別為AB,BC中點,F(xiàn)為AC上一點,且∠AFE=∠A,DM∥EF交AC于點M.

(1)求證:DM=DA;
(2)點G在BE上,且∠BDG=∠C,如圖②,求證:△DEG∽△ECF;
(3)在圖②中,取CE上一點H,使∠CFH=∠B,若BG=1,求EH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,等邊△ABC中,DAC中點,∠EDF=120°,DFABF點,且AF=nBF(n為常數(shù),且n1).

(1)求證:DF=DE;

(2)如圖1,求證:AF﹣CE=AB;

(3)如圖2,當n=   時,過DDMBCM點,CEM的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某市市民晚飯后1小時內(nèi)的生活方式,調(diào)查小組設(shè)計了“閱讀”、“鍛煉”、“看電視”和“其它”四個選項,用隨機抽樣的方法調(diào)查了該市部分市民,并根據(jù)調(diào)查結(jié)果繪制成如下統(tǒng)計圖.

根據(jù)統(tǒng)計圖所提供的信息,解答下列問題:
(1)本次共調(diào)查了名市民;
(2)補全條形統(tǒng)計圖;
(3)該市共有480萬市民,估計該市市民晚飯后1小時內(nèi)鍛煉的人數(shù).

查看答案和解析>>

同步練習冊答案