【題目】解不等式組 請結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得
(Ⅱ)解不等式②,得
(Ⅲ)把不等式①和②的階級在數(shù)軸上表示出來;
(Ⅳ)原不等式組的解集為

【答案】x≥﹣3;x<2;;﹣3≤x<2
【解析】解:(Ⅰ)系數(shù)化成1得x≥﹣3. 故答案是:x≥﹣3;
(Ⅱ)去括號,得3x+3<2x+5,
移項,得3x﹣2x<5﹣3,
合并同類項,得x<2.
故答案是:x<2;
(Ⅳ)不等式組的解集是﹣3≤x<2.
故答案是:﹣3≤x<2.
【考點精析】通過靈活運用不等式的解集在數(shù)軸上的表示和一元一次不等式組的解法,掌握不等式的解集可以在數(shù)軸上表示,分三步進(jìn)行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈;解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A(,1)、B(2,0)、O(0,0),反比例函數(shù)y=圖象經(jīng)過點A.

(1)求k的值
(2)將△AOB繞點O逆時針旋轉(zhuǎn)60°,得到△COD,其中點A與點C對應(yīng),試判斷點D是否在該反比例函數(shù)的圖象上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索性問題:

已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請回答問題:

(1)請直接寫出a、b、c的值.a=   ,b=   ,c=   ;

(2)數(shù)軸上a、b、c三個數(shù)所對應(yīng)的點分別為A、B、C,點A、B、C同時開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒1個單位長度和3個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC.

①t秒鐘過后,AC的長度為   (用t的關(guān)系式表示);

請問:BC﹣AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一動點從原點出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動一個單位,得到(0,1),(1,1),(1,0),(2,0),…那么點的坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在9×9的正方形網(wǎng)格中,△ABC三個頂點在格點上,每個小正方形的邊長為1.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系后,若點A的坐標(biāo)為(1,1),點C的坐標(biāo)為(4,2),畫出平面直角坐標(biāo)系并寫出點B的坐標(biāo);

(2)直線l經(jīng)過點A且與y軸平行,寫出點B、C關(guān)于直線l對稱點B1、C1的坐標(biāo);

(3)直接寫出BC上一點P(a,b)關(guān)于直線l對稱點P1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某中學(xué)九年級數(shù)學(xué)活動小組選定測量學(xué)校前面小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測得大樹頂端B的仰角是48°.若斜坡FA的坡比i=1: ,求大樹的高度.(結(jié)果保留一位小數(shù))參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11, 取1.73.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2﹣4x與x軸交于O,A兩點,P為拋物線上一點,過點P的直線y=x+m與對稱軸交于點Q

(1)這條拋物線的對稱軸是 ,直線PQ與x軸所夾銳角的度數(shù)是 .
(2)若兩個三角形面積滿足S△POQ=S△PAQ , 求m的值
(3)當(dāng)點P在x軸下方的拋物線上時,過點C(2,2)的直線AC與直線PQ交于點D,求:①PD+DQ的最大值;②PDDQ的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=15AC=13,BC邊上的高AD=12,則BC的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C是線段AB上的一點,M是AB的中點,N是CB的中點.

(1)若AB=13,CB=5,求MN的長度;

(2)若AC=6,求MN的長度。

查看答案和解析>>

同步練習(xí)冊答案