【題目】某商場第1次用39萬元購進A、B兩種商品,銷售完后獲得利潤6萬元,它們的進價和售價如下表:總利潤單件利潤銷售量

商品價格

A

B

進價

1200

1000

售價

1350

1200

(1)該商場第1次購進A、B兩種商品各多少件?

(2)商場第2次以原進價購進AB兩種商品,購進A商品的件數(shù)不變,而購進B商品的件數(shù)是第1次的2倍,A商品按原售價銷售,而B商品按原售價打折銷售,若兩種商品銷售完畢,要使得第2次經(jīng)營活動獲得利潤等于54000元,則B種商品是打幾折銷售的?

【答案】1)商場第1次購進A商品200件,B商品150件;(2)九折

【解析】

1)設(shè)第1次購進A商品x件,B商品y件,根據(jù)該商場第1次用39萬元購進A、B兩種商品且銷售完后獲得利潤6萬元,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;

2)設(shè)B商品打m折出售,根據(jù)總利潤=單件利潤×銷售數(shù)量,即可得出關(guān)于m的一元一次方程,解之即可得出結(jié)論.

解:(1)設(shè)第1次購進A商品x件,B商品y件.

根據(jù)題意得:,

解得:

答:商場第1次購進A商品200件,B商品150件.

2)設(shè)B商品打m折出售.

根據(jù)題意得:200×(13501200+150×2×(1200×1000)=54000,

解得:m9

答:B種商品打九折銷售的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要求完成下列各題:

(1)畫線段AD∥BC且使AD=BC,連接CD;

(2)線段AC的長為___CD的長為___,AD的長為___.

(3)試判斷△ACD的形狀,并求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,點 D,E 分別在邊 AC,AB 上,BD CE 交于點 O,給出下列三個條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.

(1)上述三個條件中,由哪兩個條件可以判定△ABC 是等腰三角形?(用序號寫出所有成立的情形)

(2)請選擇(1)中的一種情形,寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中將向下平移3個單位長度得到直線,直線x軸交于點C;直線x軸、y軸交于AB兩點,且與直線交于點D

填空:點A的坐標(biāo)為______,點B的坐標(biāo)為______;

直線的表達式為______;

在直線上是否存在點E,使?若存在,則求出點E的坐標(biāo);若不存在,請說明理由.

如圖2,點P為線段AD上一點不含端點,連接CP,一動點HC出發(fā),沿線段CP以每秒1個單位的速度運動到點P,再沿線段PD以每秒個單位的速度運動到點D后停止,求點H在整個運動過程中所用時間最少時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市開展一項自行車旅游活動,線路需經(jīng)A,B,C,D四地,如圖,其中A,B,C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問沿上述線路從A地到D地的路程大約是多少?(最后結(jié)果保留整數(shù),參考數(shù)據(jù):sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電信公司推出甲、乙兩種收費方式供手機用戶選擇:

甲種方式:每月收月租費5元,每分鐘通話費為元;

乙種方式:不收月租費,每分鐘通話費為元;

請分別寫出甲乙兩種收費方式每月付費、與通話時間分鐘之間函數(shù)表達式;

如何根據(jù)通話時間的多少選擇付費方式,請給出你的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),ABCD,猜想∠BPD與∠B.D的關(guān)系,說明理由.(提示:三角形的內(nèi)角和等于180°)

①填空或填寫理由

解:猜想∠BPD+B+D=360°

理由:過點PEFAB

∴∠B+BPE=180°______

ABCD,EFAB,

___________,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)

∴∠EPD+______=180°

∴∠B+BPE+EPD+D=360°

∴∠B+BPD+D=360°

②依照上面的解題方法,觀察圖(2),已知ABCD,猜想圖中的∠BPD與∠B.D的關(guān)系,并說明理由.

③觀察圖(3)(4),已知ABCD,直接寫出圖中的∠BPD與∠B.D的關(guān)系,不說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司有火車車皮和貨車可供租用,貨主準(zhǔn)備租用火車車皮和貨車運輸一批物資,已知以往用這種火車車皮和貨車運貨情況如下表:

第一次

第二次

火車車皮(節(jié))

6

8

貨車(輛)

15

10

累計運貨(噸)

360

440

1)每節(jié)火車車皮和每輛貨車平均各裝物資多少噸?

2)若貨主需要租用該公司的火車車皮7節(jié),貨車10輛,剛好運完這批貨物,如按每噸付運費60元,則貨主應(yīng)付運費總額為多少元?

3)若貨主共有300噸貨,計劃租用該公司的火車車皮或貨車正好(每節(jié)車皮和每輛貨車都滿載)把這批貨運完,該公司共有哪幾種運貨方案?寫出所有的方案.

查看答案和解析>>

同步練習(xí)冊答案