【題目】某校為培養(yǎng)青少年科技創(chuàng)新能力,舉辦了動(dòng)漫制作活動(dòng),小明設(shè)計(jì)了點(diǎn)做圓周運(yùn)動(dòng)的一個(gè)雛型.如圖所示,甲、乙兩點(diǎn)分別從直徑的兩端點(diǎn) A、B以順時(shí)針、逆時(shí)針的方向同時(shí)沿圓周運(yùn)動(dòng). 甲運(yùn)動(dòng)的路程l(cm)與時(shí)間t(s)滿足關(guān)系:(t≥0),乙以4 cm/s的速度勻速運(yùn)動(dòng),半圓的長(zhǎng)度為 21 cm.
(1)甲運(yùn)動(dòng) 4 s后的路程是多少?
(2)甲、乙從開始運(yùn)動(dòng)到第一次相遇時(shí),它們運(yùn)動(dòng)了多少時(shí)間?
(3)甲、乙從開始運(yùn)動(dòng)到第二次相遇時(shí),它們運(yùn)動(dòng)了多少時(shí)間?
【答案】(1)、14cm;(2)、3s;(3)、7s.
【解析】
試題分析:(1)、將t的值代入代數(shù)式,從而求出路程;(2)、設(shè)它們運(yùn)動(dòng)了ms后第一次相遇,根據(jù)運(yùn)動(dòng)的路程之和為21列出方程,從而得出答案;(3)、設(shè)它們運(yùn)動(dòng)了ms后第一次相遇,根據(jù)運(yùn)動(dòng)的路程之和為63列出方程,從而得出答案.
試題解析:(1)、當(dāng)t =4時(shí),(cm)
答:甲運(yùn)動(dòng)4s后的路程是14 cm
(2)、設(shè)它們運(yùn)動(dòng)了ms后第一次相遇,根據(jù)題意,得:
解得, (不合題意,舍去)
答:甲、乙從開始運(yùn)動(dòng)到第一次相遇時(shí),它們運(yùn)動(dòng)3s.
(3)、設(shè)它們運(yùn)動(dòng)了ns后第二次相遇,根據(jù)題意,得:
解得,(不合題意,舍去)
答:甲、乙從開始運(yùn)動(dòng)到第二次相遇時(shí),它們運(yùn)動(dòng)了7s.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)戶去年承包荒山若干畝,投資7800 元改造后,種果樹2000棵.今年水果總產(chǎn)量為18000千克,此水果在市場(chǎng)上每千克售a元,在果園每千克售b元(b<a).該農(nóng)戶將水果拉到市場(chǎng)出售平均每天出售1000千克,需8 人幫忙,每人每天付工資25元,農(nóng)用車運(yùn)費(fèi)及其他各項(xiàng)稅費(fèi)平均每天100元.
(1)分別用a,b表示兩種方式出售水果的收入?
(2)若a=1.3元,b=1.1元,且兩種出售水果方式都在相同的時(shí)間內(nèi)售完全部水果,請(qǐng)你通過(guò)計(jì)算說(shuō)明選擇哪種出售方式較好.
(3)該農(nóng)戶加強(qiáng)果園管理,力爭(zhēng)到明年純收入達(dá)到15000元,那么純收入增長(zhǎng)率是多少?(純收入=總收入﹣總支出,該農(nóng)戶采用了(2)中較好的出售方式出售)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(a-1,a+b),B(a,0),且(a+b-3)2+|a-2b|=0,C為x軸上點(diǎn)B右側(cè)的動(dòng)點(diǎn),以AC為腰作等腰三角形ACD,使AD=AC,∠CAD=∠OAB,直線DB交y軸于點(diǎn)P.
(1)線段AO與線段AB的數(shù)量關(guān)系是______(填“>”、“≥”、“≤”、“<”或“=”);
(2)求證:△AOC≌△ABD;
(3)若∠CAD=30,當(dāng)點(diǎn)C運(yùn)動(dòng)時(shí),點(diǎn)P在y軸上的位置是否發(fā)生改變,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABD和△ACE中,有下列判斷:
①AB=AC;②∠B=∠C;③∠BAC=∠EAD;④AD=AE.
請(qǐng)用其中的三個(gè)判斷作為條件,余下的一個(gè)判斷作為結(jié)論(用序號(hào)的形式),寫出一個(gè)由三個(gè)條件能推出結(jié)論成立的式子,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=AC,∠ABC的平分線BD交AC于點(diǎn)D,CE⊥BD,交BD的延長(zhǎng)線于點(diǎn)E.試猜想CE與BD的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一名考生步行前往考場(chǎng),5分鐘走了總路程的,估計(jì)步行不能準(zhǔn)時(shí)到達(dá),于是他改乘出租車趕往考場(chǎng),他的行程與時(shí)間關(guān)系如圖所示(假定總路程為1,出租車勻速),則他到達(dá)考場(chǎng)所花的時(shí)間比一直步行提前了________分鐘。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,O是AB上一點(diǎn),以O(shè)A為半徑的⊙O經(jīng)過(guò)點(diǎn)D。
(1)求證:BC是⊙O切線;
(2)若BD=5,DC=3,求AC的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC≌△ADE,已知點(diǎn)C和點(diǎn)E是對(duì)應(yīng)點(diǎn),BC的延長(zhǎng)線分別交AD,DE于點(diǎn)F,G,且∠DAC=10°,∠B=∠D=25°,∠EAB=120°,試求∠DFB和∠DGB的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com