【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有下列5個結論,①abc<0; ②2a+b=0;③b2﹣4ac<0;④a+b+c>0;⑤a﹣b+c<0.其中正確的結論有________(填序號)
【答案】①②④⑤
【解析】
首先根據(jù)開口方向確定a的取值范圍,根據(jù)對稱軸的位置確定b的取值范圍,根據(jù)拋物線與y軸的交點確定c的取值范圍,根據(jù)拋物線與x軸是否有交點確定b2﹣4ac的取值范圍,根據(jù)x=﹣1和x=1的函數(shù)值可以判斷④⑤.
∵拋物線開口向下,∴a<0.
∵對稱軸x=1=﹣,∴b>0.
∵拋物線與y軸的交點在x軸的上方,∴c>0,∴abc<0,故①正確;
∵對稱軸x=1=﹣,∴2a=﹣b,∴2a+b=0,故②正確;
∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,故③錯誤;
根據(jù)圖象可知,當x=1時,y=a+b+c>0,故④正確;
根據(jù)圖象知道當x=﹣1時,y=a﹣b+c<0,故⑤正確.
故答案為:①②④⑤.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為等腰三角形ABC底邊BC的中點,,,腰AC的垂直平分線EF分別交AB、AC于E、F點,若點P為線段EF上一動點,則△OPC周長的最小值為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,線段的兩個端點的坐標分別為.
(1)畫出線段關于軸對稱的對應線段,再畫出線段關于軸對稱的對應線段;
(2)點的坐標為_________;
(3)若此平面直角坐標系中有一點,先找出點關于軸對稱的對應點,再找出點關于軸對稱的對應點,則點的坐標為_______;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知E是正方形ABCD的邊CD上一點,BF⊥AE于F.
(1)求證:△ABF∽△EAD;
(2)當AD=2,=時,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與軸交于點,與軸交于點,與直線交于點,點是軸上的一個動點,設.
(1)若的值最小,求的值;
(2)若直線將分割成兩個等腰三角形,請求出的值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國中東部地區(qū)霧霾天氣趨于嚴重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務.
(1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關系式;并求出自變量x的取值范圍;
(2)當售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一個房間內(nèi),有一個梯子斜靠在墻上,梯子頂端距地面的垂直距離米,梯子的傾斜角度.若梯子斜靠在對面墻上,梯子的傾斜角度.試求該房間的寬和梯子的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同.
(1)求每件甲種、乙種玩具的進價分別是多少元?
(2)商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com