如圖,點O是菱形ABCD對角線的交點,DE∥AC,CE∥BD,連接OE.
求證:OE=BC.
【答案】分析:先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對角線互相垂直求出∠COD=90°,證明OCED是矩形,利用勾股定理即可求出BC=OE.
解答:證明:∵DE∥AC,CE∥BD,
∴四邊形OCED是平行四邊形,
∵四邊形ABCD是菱形,
∴∠COD=90°,
∴四邊形OCED是矩形,
∴DE=OC,
∵OB=OD,∠BOC=∠ODE=90°,
∴BC=,OE=
∴BC=OE.
點評:本題考查了菱形的性質,矩形的判定與性質,勾股定理的應用,是基礎題,熟記矩形的判定方法與菱形的性質是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點F是菱形ABDC對角線BC上一動點,EF∥AB,GF∥AC,菱形兩條對角線BC和AD的長分別為2cm、5cm,當點F在BC上移動時,陰影面積會改變嗎?如果不變,請求出陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延精英家教網(wǎng)長線于F.
(1)求證:∠DCP=∠DAP;
(2)若AB=2,DP:PB=1:2,且PA⊥BF,求對角線BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•蘇州)如圖,點P是菱形ABCD對角線AC上的一點,連接DP并延長DP交邊AB于點E,連接BP并延長交邊AD于點F,交CD的延長線于點G.
(1)求證:△APB≌△APD;
(2)已知DF:FA=1:2,設線段DP的長為x,線段PF的長為y.
①求y與x的函數(shù)關系式;
②當x=6時,求線段FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆湖北省襄陽市襄州區(qū)中考適應性考試數(shù)學試卷(帶解析) 題型:解答題

如圖,點P是菱形ABCD對角線BD上一點,連接CP并延長交AD于點E,交BA的延長線于點F.

(1)求證:∠DCP=∠DAP;
(2)若AB=2,DP∶PB=1∶2,且PA⊥BF,求對角線BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年湖北省襄陽市襄州區(qū)中考適應性考試數(shù)學試卷(解析版) 題型:解答題

如圖,點P是菱形ABCD對角線BD上一點,連接CP并延長交AD于點E,交BA的延長線于點F.

(1)求證:∠DCP=∠DAP;

(2)若AB=2,DP∶PB=1∶2,且PA⊥BF,求對角線BD的長.

 

查看答案和解析>>

同步練習冊答案